Channel polarization:

A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels

Erdal Arikan

presented by Tomáš Gavenčiak

Binary channels

Binary input channel W : Input alphabet $\mathcal{X}=\{0,1\}$, output alphabet \mathcal{Y} arbitrary. Given known transition probabilities $W(y \in \mathcal{Y} \mid x \in \mathcal{X})$.
Symmetric channel (BSC) has a permutation ϖ on \mathcal{Y} such that $\varpi=\varpi^{-1}$ and $W(y \mid 0)=$ $W(\varpi(y) \mid 1)$ for all y. An erasure channel (BEC) is a code such that either $W(y \mid 0) W(y \mid 1)=0$ or $W(y \mid 0)=W(y \mid 1)(y$ is then an erasure symbol).
Symmetric capacity and Bhattacharyya coefficient.

$$
\begin{gathered}
I(W)=I(Y ; X)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \frac{1}{2} W(y \mid x) \log \frac{2 W(y \mid x)}{W(y \mid 1)+W(y \mid 0)} \\
Z(W)=\sum_{y \in \mathcal{Y}} \sqrt{W(y \mid 0) W(y \mid 1)}
\end{gathered}
$$

Proposition 1. For any channel $W: 1-\log (1+Z(W)) \leq I(W) \leq \sqrt{1-Z(W)^{2}}$

Polarization

Channel combining. Let $W_{N}\left(y_{1}^{N} \mid u_{1}^{N}\right)=W^{N}\left(y_{1}^{N} \mid G_{N} x_{1}^{N}\right)$ be a channel $\mathcal{X}^{N} \rightarrow \mathcal{Y}^{N}$ where $G_{N}=B_{N} F^{\otimes N}$ and with B_{N} bit-reversal permutation.
Channel splitting. Let $W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right)=\sum_{u_{i+1}^{N}} 2^{1-N} W_{N}\left(y_{1}^{N}, u_{1}^{N}\right)$, considering it as a channel $\mathcal{X} \rightarrow \mathcal{Y}^{N} \times \mathcal{X}^{i-1}$.
Single-step transformation of two copies of channel $W: \mathcal{X} \rightarrow \mathcal{Y}$ to channels $W^{\prime}: \mathcal{X} \rightarrow \mathcal{Y}^{\prime}$ and $W^{\prime \prime}: \mathcal{X} \rightarrow \mathcal{Y}^{\prime} \times \mathcal{X}$ as $(W, W) \rightarrow\left(W^{\prime}, W^{\prime \prime}\right)$:

$$
\begin{aligned}
& W^{\prime}\left(\left(y_{1}, y_{2}\right) \mid u_{1}\right)=\sum_{u_{2}^{\prime}} 1 / 2 W\left(y_{1} \mid u_{1}+u_{2}^{\prime}\right) W\left(y_{2} \mid u_{2}^{\prime}\right) \\
& W^{\prime \prime}\left(\left(y_{1}, y_{2}\right), u_{1} \mid u_{2}\right)=1 / 2 W\left(y_{1} \mid u_{1}+u_{2}\right) W\left(y_{2} \mid u_{2}\right)
\end{aligned}
$$

Proposition 4. For $(W, W) \rightarrow\left(W^{\prime}, W^{\prime \prime}\right)$ we have $I\left(W^{\prime}\right)+I\left(W^{\prime \prime}\right)=2 I(W)$ and $I\left(W^{\prime}\right) \leq$ $I\left(W^{\prime \prime}\right)$.
Proposition 5. For $(W, W) \rightarrow\left(W^{\prime}, W^{\prime \prime}\right)$ we have $Z\left(W^{\prime \prime}\right)=Z(W)^{2}, Z\left(W^{\prime}\right) \leq 2 Z(W)-$ $Z(W)^{2}$.
Decoding. Let $h_{i}\left(y_{1}^{N}, u_{1}^{i-1}\right)=\operatorname{argmax}_{u_{i} \in \mathcal{X}} W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right)$ be the estimate for u_{i} with u_{1}^{i-1} already decoded.
G_{N}-coset code with parameters $\left(N, K, A, u_{A^{c}}\right)$ where $A \subseteq\{1, \ldots N\}$ and $|A|=K$ is encoded as $x_{1}^{N}=\left(u_{A}+u_{A^{c}}\right) G_{N}$.
Code performance $P_{e}\left(N, K, A, u_{A^{c}}\right)$ is the probability of decoding error. $P_{e}(N, K, A)=$ $\mathbb{E}_{u_{A^{c}}} P_{e}\left(N, K, A, u_{A^{c}}\right)$.
Proposition 2. For any N, K, A, we have $P_{e}(N, K, A) \leq \sum_{i \in A} Z\left(W_{N}^{(i)}\right)$
Polar code has A chosen to include the indices i with largest $Z\left(W_{N}^{(i)}\right)$. ($I\left(W_{N}^{(i)}\right)$ would also work.) Let $P_{e}(N, R)=P_{e}(N,\lfloor R N\rfloor, A)$ with A chosen as above and $|A|=\lfloor R N\rfloor$.

Analysis

Theorem 1. For fixed W and $\delta \in(0,1)$, as $N=2^{k}$ goes to infinity, the fraction of indices i with $I\left(W_{N}^{(i)}\right) \geq 1-\delta$ goes to $I(W)$ and the fraction of indices i with $I\left(W_{N}^{(i)}\right) \leq \delta$ goes to $1-I(W)$.

Theorem 2. For any $0<R<I(W)$ there is a sequence of subsets $A_{N} \subseteq\{1, \ldots N\}$ for $N=2^{k}$ going to infinity with $\left|A_{N}\right| \geq N R$ and $Z\left(W_{N}^{(i)}\right)=O\left(N^{-5 / 4}\right)$ for all $i \in A_{N}$.
Proposition 18. [improved T2] For any $0<R<I(W)$ and any $\beta<1 / 2$ there is a sequence of subsets $A_{N} \subseteq\{1, \ldots N\}$ for $N=2^{k}$ going to infinity with $\left|A_{N}\right| \geq N R$ and $\sum_{i \in A_{N}} Z\left(W_{N}^{(i)}\right)=o\left(2^{-N^{\beta}}\right)$.
Theorem 3. For any $R<I(W)$ we have $P_{e}(N, R)=O\left(N^{-1 / 4}\right)$.
Proposition 19. [improved T3] For any $R<I(W)$ and $\beta<1 / 2$ we have $P_{e}(N, R)=$ $o\left(2^{-N^{\beta}}\right)$.
Theorem 4. For a symmetric channel W and any $R<I(W)$ we have $P_{e}\left(N, K, A, u_{A^{c}}\right)=$ $O\left(N^{-1 / 4}\right)$ with any $u_{A^{c}}$.
Theorem 5 . The complexity of encoding and decoding of a given polar code is $O(N \log N)$.

