A Rendezvous of Logic, Complexity, and Algebra

Hubie Chen
presented by Martin Kupec

Definition 1. A constraint over a constraint language Γ is an expression of the form $R\left(v_{1}, \ldots, v_{k}\right)$ where R is a relation of arity k contained in Γ, and the v_{i} are variables. A constraint is satisfied by a mapping f defined on the v_{i} if $\left(f\left(v_{1}\right), \ldots, f\left(v_{k}\right)\right) \in R$.

Example 2. We demonstrate that 3-SAT can be viewed as a problem of the form $\operatorname{CSP}(\Gamma)$ for a boolean constraint language Γ. Define the relations $R_{0,3}, R_{1,3}, R_{2,3}$, and $R_{3,3}$ by

$$
\begin{aligned}
& R_{0,3}=\{0,1\}^{3} \backslash\{(0,0,0)\} \equiv(x \vee y \vee z) \\
& R_{1,3}=\{0,1\}^{3} \backslash\{(1,0,0)\} \equiv(\neg x \vee y \vee z) \\
& R_{2,3}=\{0,1\}^{3} \backslash\{(1,1,0)\} \equiv(\neg x \vee \neg y \vee z) \\
& R_{3,3}=\{0,1\}^{3} \backslash\{(1,1,1)\} \equiv(\neg x \vee \neg y \vee \neg z)
\end{aligned}
$$

Definition 3. We say that a relation $R \subseteq D^{k}$ is pp-definable (short for primitive positive definable) from a constraint language Γ if for some $m \geq 0$ there exists a finite conjunction \mathcal{C} consisting of constraints and equalities $(u=v)$ over variables $\left\{v_{1}, \ldots, v_{k}, x_{1}, \ldots, x_{m}\right\}$ such that

$$
R\left(v_{1}, \ldots, v_{k}\right) \equiv \exists x_{1} \ldots \exists x_{m} \mathcal{C}
$$

That is, R contains exactly those tuples of the form $\left(g\left(v_{1}\right), \ldots, g\left(v_{k}\right)\right)$ where g is an assignment that can be extended to a satisfying assignment of \mathcal{C}. We use $\langle\Gamma\rangle$ to denote the set of all relations that are pp-definable from Γ.

Example 4. Let $S=\{(0,1),(1,0)\}$ be the disequality relation. The following is a pp-definition of S from the constraint language Γ_{3} (3-SAT).

$$
S(y, z)=\exists x\left(R_{0,3}(x, y, z) \wedge R_{1,3}(x, y, z) \wedge R_{2,3}(z, y, x) \wedge R_{3,3}(z, y, x)\right)
$$

Proposition 5. Let Γ and Γ^{\prime} be finite constraint languages. If $\Gamma^{\prime} \subseteq\langle\Gamma\rangle$, then $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ reduces to $\operatorname{CSP}(\Gamma)$.
Definition 6. An operation $f: D^{m} \rightarrow D$ is a polymorphism of a relation $R \subseteq D^{k}$ if for any choice of m tuples $\left(t_{11}, \ldots, t_{1 k}\right), \ldots,\left(t_{m 1}, \ldots, t_{m k}\right)$ from R, it holds that the tuple obtained from these m tuples by applying f coordinate-wise, $\left(f\left(t_{11}, \ldots, t_{m 1}\right), \ldots, f\left(t_{1 k}, \ldots, t_{m k}\right)\right)$, is in R.

Definition 7. The set of polymorphisms of Γ is defined as follows.

$$
\operatorname{Pol}(\Gamma)=\{f: \forall R \in \Gamma, f \text { is a polymorphism of } R\} .
$$

Definition 8. The set of relations having all operations in O as a polymorphism is denoted by $\operatorname{lnv}(O)$.

$$
\operatorname{Inv}(O)=\{R: \forall f \in O, f \text { is a polymorphism of } R\} .
$$

Theorem 9. Let Γ be a finite constraint language over a finite domain D. It holds that $\langle\Gamma\rangle=\operatorname{lnv}(\operatorname{Pol}(\Gamma))$.
Theorem 10. Let Γ and Γ^{\prime} be finite constraint languages. If $\operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}\left(\Gamma^{\prime}\right)$, then $\Gamma^{\prime} \subseteq\langle\Gamma\rangle$ and $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ reduces to $\operatorname{CSP}(\Gamma)$.

Definition 11. A clone is a set of operations that

- contains all projections, that is, the operations $\pi_{i}^{m}: D^{m} \rightarrow D$ with $1 \leq i \leq m$ such that $\pi_{i}^{m}\left(d_{1}, \ldots, d_{m}\right)=$ d_{i} for all $d_{1}, \ldots, d_{m} \in D$, and
- is closed under composition, where the composition of an arity n operation $f: D^{n} \rightarrow D$ and n arity m operations $f_{1}, \ldots, f_{n}: D^{m} \rightarrow D$ is defined to be the arity m operation $g: D^{m} \rightarrow D$ such that $g\left(d_{1}, \ldots, d_{m}\right)=f\left(f_{1}\left(d_{1}, \ldots, d_{m}\right), \ldots, f_{n}\left(d_{1}, \ldots, d_{m}\right)\right)$ for all $d_{1}, \ldots, d_{m} \in D$.
Proposition 12. For all constraint languages Γ, the set of operations $\operatorname{Pol}(\Gamma)$ is a clone.
Theorem 13. (Schaefer's theorem - algebraic formulation) Let Γ be a finite boolean constraint language. The problem $\operatorname{CSP}(\Gamma)$ is polynomial-time tractable if Γ has one of the following six operations as a polymorphism:
- the constant operation 0 ,
- the constant operation 1,
- the boolean $A N D$ operation \wedge,
- the boolean OR operation \vee,
- the operation majority,
- the operation minority.

Otherwise, the problem $\operatorname{CSP}(\Gamma)$ is $N P$-complete.
Algorithms used for tractability proof.
Arc consistency algorithm
Input: an instance of the CSP.
1 For each variable v, define D_{v} to be $\cap_{C} \pi_{v}(C)$ where the intersection is over all constraints C.
2 For each constraint $R\left(v_{1}, \ldots, v_{k}\right)$, replace R with $R \cap\left(D_{v_{1}} \times \cdots \times D_{v_{k}}\right)$. If R becomes empty, then terminate and report "unsatisfiable".
3 If any relations were changed in step 2, goto step 1. Otherwise, halt.
Algorithm for majority polymorphism
Input: an instance ϕ of the CSP with variable set V.
1 For each non-empty subset $W=\left\{w_{1}, \ldots, w_{l}\right\}$ of V of size $l \leq 3$, add the constraint $D^{l}\left(w_{1}, \ldots, w_{l}\right)$ to ϕ.
2 For each constraint $R\left(w_{1}, \ldots, w_{l}\right)$ of ϕ with $l \leq 3$, compute the set $R^{\prime}=\left\{\left(f\left(w_{1}\right), \ldots, f\left(w_{l}\right)\right) \mid f:\left\{w_{1}, \ldots, w_{l}\right\} \rightarrow D\right.$ is a partial solution of the instance $\left.\phi\right\}$.
Then, replace R with R^{\prime}.
If R becomes empty, terminate and report "unsatisfiable".
3 If any relations were changed in step 2, goto step 2 and repeat it. Otherwise, halt.
Theorem 14. A clone over $\{0,1\}$ either contains only essentially unary operations, or contains one of the following four operations:

- the boolean $A N D$ operation \wedge,
- the booelan OR operation \vee,
- the operation majority,
- the operation minority.

Lemma 15. If Γ is a finite boolean constraint language such that $\operatorname{Pol}(\Gamma)$ contains only essentially unary operations that act as permutations, then for any finite boolean constraint language Γ^{\prime}, it holds that $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ reduces to $\operatorname{CSP}(\Gamma)$.
Proposition 16. Let Φ be an instance of Quantified Horn-SAT having prefix class Π_{2}. The formula Φ is true if and only if for every assignment $f \in[\leq 1 \text {, false }]_{\Phi}$, there exists an extension $f^{\prime}: Y_{\Phi} \cup X_{\Phi} \rightarrow\{$ true, false $\}$ of f satisfying all clauses of Φ.

