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Definitions:

• a (small) bipartite graph H , a (large) graph G

• homomorphism density : tH(G) = (number of homomorphism H → G)/|G||H|

• subgraph density : H-density of G = a fraction of injective mappings H → G
that are homomorphisms

Observation. For dense G, the H-density of G = tH(G) + o(1).

Conjecture [Sidorenko, Erdős-Simonovits]. Let H be a bipartite graph with
m edges. For every graph G,

tH(G) ≥ tK2
(G)m.

That is, among the graphs G of edge density p, tH(G) attains its minimum when G
is a random graph of edge density p.

Conjecture (analytic form). Let µ be the Lebesgue measure on [0, 1] and let
h(x, y) be a bounded, non-negative, symmetric and measurable function on [0, 1]2.
LetH be a bipartite graph with vertices u1, . . . , ut in the first part, vertices v1, . . . , vs
in the second part and m edges. Then

∫

∏

(ui,vj)∈E(H)

h(xi, yj)dµ
s+t ≥

(
∫

hdµ2

)m

.

known: e.g. for complete bipartite graphs, trees, even cycles, subgraphs of K3,s

(and perhaps K4,s) [Sidorenko, 1993], hypercubes [Hatami, 2010]

Theorem 1. Sidorenko’s conjecture holds for every bipartite graph H which has a
vertex complete to the other part.

Corollary (approximate Sidorenko’s conjecture). If H is a bipartite graph
with m edges and width w (minimum degree of the bipartite complement H), then
tH(G) ≥ tK2

(G)m+w holds for every graph G.

Definitions: A sequence (Gn : n = 1, 2, . . . ) of graphs is called quasirandom with
density p (where 0 < p < 1) if, for every graph H ,

tH(Gn) = (1 + o(1))p|E(H)|. (1)

A graph F is called forcing if the fact that (1) holds for H = K2 and H = F implies
that (Gn : n = 1, 2, . . . ) is quasirandom.

known: C2t and K2,t are forcing [Chung, Graham, Wilson, 1989];
Ks,t are forcing [Skokan, Thoma, 2004]

Conjecture (forcing). A graph is forcing if and only if it is bipartite and contains
a cycle.

Theorem 2. The forcing conjecture holds for every bipartite graph H which has
two vertices in one part complete to the other part, which has at least two vertices.



Proof of Theorem 1.

Lemma 1. (dependent random choice) Let G be a graph with N vertices and
pN2/2 edges. Call a vertex v bad with respect to k if the number of sequences of k
vertices in N(v) with at most (2n)−n−1pkN common neighbors is at least 1

2n
|N(v)|k.

Call v good if it is not bad with respect to k for all 1 ≤ k ≤ n. Then the sum of the
degrees of the good vertices is at least pN2/2.

Lemma 2. Suppose H is a hypergraph with v vertices and at most e edges and G
is a hypergraph on N vertices with the property that for each k, 1 ≤ k ≤ v, the
number of sequences of k vertices of G that do not form an edge of G is at most
1
2e
Nk. Then the number of homomorphisms from H to G is at least 1

2
Nv.

Lemma 3. Let H = (V1, V2, E) be a bipartite graph with n vertices and m edges
such that there is a vertex u ∈ V1 which is adjacent to all vertices in V2. Let G
be a graph with N vertices and pN2/2 edges, so tK2

(G) = p. Then the number of
homomorphisms from H to G is at least (2n)−n2

pmNn.

last step: “tensor power trick” to eliminate the constant (2n)−n2

Observation. For all H,G, F , tH(F ×G) = tH(F )× tH(G).
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Theorem 3. LetH be the (bipartite) graph on the vertex set {x, y1, y2, . . . , ym, v1, v2, . . . , vk}
such that x is connected to v1, v2, . . . , vk and yt is connected to the vertices St ⊆
{v1, v2, . . . , vk} where |St| = at. Let e = k +

∑m

t=1 at be the total number of edges
in H . If W : [0, 1]2 → R

+ is a measurable function and p = E(W ), then

t(H,W ) := E

∏

(xi,xj)∈E(H)

W (xi, xj) ≥ pe.

Theorem 4. The forcing conjecture holds for bipartite graphs in which one vertex
is complete to the other side (and are not trees).

Main tool: Jensen’s inequality. Let (Ω, µ) be a probability space, let c be
a convex (resp. concave) function on an interval D ⊂ R and g : Ω → D be a
measurable function. Then

E(c(g)) ≥ c(E(g)) (convex), E(c(g)) ≤ c(E(g)) (concave). (2)

Moreover if E(f) = 1 for some non-negative function f on Ω then also

E(fc(g)) ≥ c(E(fg)) (convex), E(fc(g)) ≤ c(E(fg)) (concave). (3)

If c is a strictly convex (concave) function then equality in (3) is only possible if g
is constant on the support of f .


