AN APPROXIMATE VERSION OF SIDORENKO'S CONJECTURE
 David Conlon, Jacob Fox and Benny Sudakov

Definitions:

- a (small) bipartite graph H, a (large) graph G
- homomorphism density: $t_{H}(G)=$ (number of homomorphism $\left.H \rightarrow G\right) /|G|^{|H|}$
- subgraph density: H-density of $G=$ a fraction of injective mappings $H \rightarrow G$ that are homomorphisms
Observation. For dense G, the H-density of $G=t_{H}(G)+o(1)$.
Conjecture [Sidorenko, Erdős-Simonovits]. Let H be a bipartite graph with m edges. For every graph G,

$$
t_{H}(G) \geq t_{K_{2}}(G)^{m}
$$

That is, among the graphs G of edge density $p, t_{H}(G)$ attains its minimum when G is a random graph of edge density p.

Conjecture (analytic form). Let μ be the Lebesgue measure on $[0,1]$ and let $h(x, y)$ be a bounded, non-negative, symmetric and measurable function on $[0,1]^{2}$. Let H be a bipartite graph with vertices u_{1}, \ldots, u_{t} in the first part, vertices v_{1}, \ldots, v_{s} in the second part and m edges. Then

$$
\int \prod_{\left(u_{i}, v_{j}\right) \in E(H)} h\left(x_{i}, y_{j}\right) d \mu^{s+t} \geq\left(\int h d \mu^{2}\right)^{m}
$$

known: e.g. for complete bipartite graphs, trees, even cycles, subgraphs of $K_{3, s}$ (and perhaps $K_{4, s}$) [Sidorenko, 1993], hypercubes [Hatami, 2010]

Theorem 1. Sidorenko's conjecture holds for every bipartite graph H which has a vertex complete to the other part.

Corollary (approximate Sidorenko's conjecture). If H is a bipartite graph with m edges and width w (minimum degree of the bipartite complement \bar{H}), then $t_{H}(G) \geq t_{K_{2}}(G)^{m+w}$ holds for every graph G.

Definitions: A sequence $\left(G_{n}: n=1,2, \ldots\right)$ of graphs is called quasirandom with density p (where $0<p<1$) if, for every graph H,

$$
\begin{equation*}
t_{H}\left(G_{n}\right)=(1+o(1)) p^{|E(H)|} . \tag{1}
\end{equation*}
$$

A graph F is called forcing if the fact that (1) holds for $H=K_{2}$ and $H=F$ implies that ($G_{n}: n=1,2, \ldots$) is quasirandom.
known: $C_{2 t}$ and $K_{2, t}$ are forcing [Chung, Graham, Wilson, 1989];
$K_{s, t}$ are forcing [Skokan, Thoma, 2004]
Conjecture (forcing). A graph is forcing if and only if it is bipartite and contains a cycle.

Theorem 2. The forcing conjecture holds for every bipartite graph H which has two vertices in one part complete to the other part, which has at least two vertices.

Proof of Theorem 1.

Lemma 1. (dependent random choice) Let G be a graph with N vertices and $p N^{2} / 2$ edges. Call a vertex v bad with respect to k if the number of sequences of k vertices in $N(v)$ with at most $(2 n)^{-n-1} p^{k} N$ common neighbors is at least $\frac{1}{2 n}|N(v)|^{k}$. Call v good if it is not bad with respect to k for all $1 \leq k \leq n$. Then the sum of the degrees of the good vertices is at least $p N^{2} / 2$.

Lemma 2. Suppose \mathcal{H} is a hypergraph with v vertices and at most e edges and \mathcal{G} is a hypergraph on N vertices with the property that for each $k, 1 \leq k \leq v$, the number of sequences of k vertices of \mathcal{G} that do not form an edge of \mathcal{G} is at most $\frac{1}{2 e} N^{k}$. Then the number of homomorphisms from \mathcal{H} to \mathcal{G} is at least $\frac{1}{2} N^{v}$.

Lemma 3. Let $H=\left(V_{1}, V_{2}, E\right)$ be a bipartite graph with n vertices and m edges such that there is a vertex $u \in V_{1}$ which is adjacent to all vertices in V_{2}. Let G be a graph with N vertices and $p N^{2} / 2$ edges, so $t_{K_{2}}(G)=p$. Then the number of homomorphisms from H to G is at least $(2 n)^{-n^{2}} p^{m} N^{n}$.
last step:"tensor power trick" to eliminate the constant $(2 n)^{-n^{2}}$
Observation. For all $H, G, F, t_{H}(F \times G)=t_{H}(F) \times t_{H}(G)$.

On the logarithmic calculus and Sidorenko's conjecture

J. L. Xiang Li and Balázs Szegedy

Theorem 3. Let H be the (bipartite) graph on the vertex set $\left\{x, y_{1}, y_{2}, \ldots, y_{m}, v_{1}, v_{2}, \ldots, v_{k}\right\}$ such that x is connected to $v_{1}, v_{2}, \ldots, v_{k}$ and y_{t} is connected to the vertices $S_{t} \subseteq$ $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ where $\left|S_{t}\right|=a_{t}$. Let $e=k+\sum_{t=1}^{m} a_{t}$ be the total number of edges in H. If $W:[0,1]^{2} \rightarrow \mathbb{R}^{+}$is a measurable function and $p=\mathbb{E}(W)$, then

$$
t(H, W):=\mathbb{E} \prod_{\left(x_{i}, x_{j}\right) \in E(H)} W\left(x_{i}, x_{j}\right) \geq p^{e} .
$$

Theorem 4. The forcing conjecture holds for bipartite graphs in which one vertex is complete to the other side (and are not trees).

Main tool: Jensen's inequality. Let (Ω, μ) be a probability space, let c be a convex (resp. concave) function on an interval $D \subset \mathbb{R}$ and $g: \Omega \rightarrow D$ be a measurable function. Then

$$
\begin{equation*}
\mathbb{E}(c(g)) \geq c(\mathbb{E}(g)) \quad(\text { convex }), \quad \mathbb{E}(c(g)) \leq c(\mathbb{E}(g)) \quad \text { (concave) } . \tag{2}
\end{equation*}
$$

Moreover if $\mathbb{E}(f)=1$ for some non-negative function f on Ω then also

$$
\begin{equation*}
\mathbb{E}(f c(g)) \geq c(\mathbb{E}(f g)) \quad(\text { convex }), \quad \mathbb{E}(f c(g)) \leq c(\mathbb{E}(f g)) \quad \text { (concave }) . \tag{3}
\end{equation*}
$$

If c is a strictly convex (concave) function then equality in (3) is only possible if g is constant on the support of f.

