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Definitions:
e a (small) bipartite graph H, a (large) graph G
o homomorphism density: ty(G) = (number of homomorphism H — G)/|G|H!

o subgraph density: H-density of G = a fraction of injective mappings H — G
that are homomorphisms

Observation. For dense G, the H-density of G =ty (G) + o(1).

Conjecture [Sidorenko, Erd&s-Simonovits]. Let H be a bipartite graph with
m edges. For every graph G,

ta(G) > tg, (G)™.

That is, among the graphs G of edge density p, ty(G) attains its minimum when G
is a random graph of edge density p.

Conjecture (analytic form). Let p be the Lebesgue measure on [0, 1] and let
h(z,y) be a bounded, non-negative, symmetric and measurable function on [0, 1]°.
Let H be a bipartite graph with vertices uq, . .., u; in the first part, vertices vy, ..., vy
in the second part and m edges. Then
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known: e.g. for complete bipartite graphs, trees, even cycles, subgraphs of Kj
(and perhaps K} ;) [Sidorenko, 1993], hypercubes [Hatami, 2010]

Theorem 1. Sidorenko’s conjecture holds for every bipartite graph H which has a
vertex complete to the other part.

Corollary (approximate Sidorenko’s conjecture). If H is a bipartite graph
with m edges and width w (minimum degree of the bipartite complement H), then
ty(G) > tg,(G)™ " holds for every graph G.

Definitions: A sequence (G, : n = 1,2,...) of graphs is called quasirandom with
density p (where 0 < p < 1) if, for every graph H,

tr(Gn) = (1+o(1))p ", (1)

A graph F' is called forcing if the fact that (1) holds for H = Ky and H = F implies
that (G, :n=1,2,...) is quasirandom.

known: Cy and K, are forcing [Chung, Graham, Wilson, 1989];
K, are forcing [Skokan, Thoma, 2004]

Conjecture (forcing). A graph is forcing if and only if it is bipartite and contains
a cycle.

Theorem 2. The forcing conjecture holds for every bipartite graph H which has
two vertices in one part complete to the other part, which has at least two vertices.



Proof of Theorem 1.

Lemma 1. (dependent random choice) Let G be a graph with N vertices and
pN?/2 edges. Call a vertex v bad with respect to & if the number of sequences of k
vertices in N (v) with at most (2n) ™" 'pF N common neighbors is at least 5| N (v)[*.
Call v good if it is not bad with respect to k for all 1 < k£ < n. Then the sum of the
degrees of the good vertices is at least pN?/2.

Lemma 2. Suppose H is a hypergraph with v vertices and at most e edges and G
is a hypergraph on N vertices with the property that for each k, 1 < k < v, the
number of sequences of k vertices of G that do not form an edge of G is at most
QLGN ¥ Then the number of homomorphisms from H to G is at least %N Y.

Lemma 3. Let H = (V3, Vs, E) be a bipartite graph with n vertices and m edges
such that there is a vertex u € Vi which is adjacent to all vertices in V5. Let G
be a graph with N vertices and pN?/2 edges, so tg,(G) = p. Then the number of
homomorphisms from H to G is at least (2n) " p"N™.

last step: “tensor power trick” to eliminate the constant (2n)~"

Observation. For all H,G, F, ty(F x G) =ty (F) x ty(G).
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Theorem 3. Let H be the (bipartite) graph on the vertex set {x, y1, Y2, . - ., Ym, V1, Va2, . - ., Uk }
such that z is connected to vy, vs, ..., v, and ¥, is connected to the vertices S; C
{vi,v9,..., v} where |Sy| = a;. Let e = k+ > ", a; be the total number of edges

in H. If W : [0,1]> — R" is a measurable function and p = E(W), then

t(H,W):=E Wz, z;) > p°.
)
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Theorem 4. The forcing conjecture holds for bipartite graphs in which one vertex
is complete to the other side (and are not trees).

Main tool: Jensen’s inequality. Let (€2, 1) be a probability space, let ¢ be
a convex (resp. concave) function on an interval D C R and g : © — D be a
measurable function. Then

E(c(g)) = ¢(E(g))  (convex), E(c(g)) < c¢(E(g)) (concave). (2)

Moreover if E(f) = 1 for some non-negative function f on {2 then also

E(fe(g)) = c(E(fg))  (convex), E(fc(g)) < c(E(fg)) (concave).  (3)

If ¢ is a strictly convex (concave) function then equality in (3) is only possible if g
is constant on the support of f.



