# 2-Cancellative Hypergraphs and Codes by Zoltan Füredi 

November 3, 2012

## 1 Definitions and notation

Definition 1. $\mathcal{F}$ a family of sets is $t$-cancellative if for all $t+2$ sets $A_{1}, \ldots A_{t}, B, C \in \mathcal{F}$ such that $A_{i} \neq B$, $A_{i} \neq B$

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{t} \cup B=A_{1} \cup A_{2} \cup \ldots \cup A_{t} \cup C \rightarrow B=C .
$$

Cancellative means 1-cancellative.

- $c(n)$ - the size of the largest cancellative family on $n$ elements
- $c(n, r)$ - the size of the largest r-uniform cancellative family on $n$ elements
- $f\left(n, P_{1}, P_{2}, \ldots\right)$ - the maximum number of subsets of $\{1,2, \ldots n\}$ satisfying properties $P_{1} P_{2}, \ldots$

Observation 1. $c(n+m) \geq c(n) c(m)$

Definition 2. Hypergraph $\mathbb{F}=(V, \mathcal{F})$ is $(k)$ uniform is each edge has the same number of elements, and linear if $|E \cap F| \leq 1$ for all edges $E, F \in \mathcal{F}$.

Definition 3. Associate each subset of $\mathcal{F}$ to its characteristic vector. If it satisfies, that for each $a$-tuple of these vectors at least $b$ different columns sum up to 1 , it is locally $(a, b)$-thin.

Definition 4. $\mathcal{F} \subseteq 2^{n}$ is $g$-cover-free if it is locally $\left(g+1, g+1\right.$-thin, i.e. it suffices $A_{0} \nsubseteq \bigcup_{i=1}^{g} A_{i}$ for all $A_{0}, A_{1}, \ldots A_{g} \in \mathcal{F}$.

- $C_{g}(n)$ - the size of the largest g-cover-free $n$ vertex code
- $C_{g}(n, r)$ - the size of the largest g-cover-free $r$-uniform hypergraph on $n$ vertices

Observation 2. - $C_{g}(n) \leq C_{g-1}(n) \leq \ldots \leq C_{1}(n)$

- $C_{g}(n, r) \leq C_{g-1}(n, r) \leq \ldots \leq C_{2}(n, r)$
- $C_{t+1}(n, r) \leq c_{t}(n, r)$ because $t+1$-cover-free $\Longleftrightarrow t$-cancellative


## 2 Estimates

Lemma 1. (D'yachkov, Rykov ) $\exists \alpha_{1}, \alpha_{2}$ such that $\alpha_{1} \frac{1}{g^{2}}<\frac{\log \left(C_{g}(n)\right)}{n}<\alpha_{2} \frac{\log (g)}{g^{2}}$
Theorem 1. $\exists \beta_{1}, \beta_{2}$ and $n_{0}(t)$ such that $\forall n>n_{0}(t), t \geq 2$ holds $\beta_{1} \frac{1}{t^{2}}<\frac{\log \left(c_{t}(n)\right)}{n}<\beta_{2} \frac{\log (t)}{t^{2}}$
Theorem 2. $\forall n, k \in \mathbb{Z}: c_{2}(n, 2 k) \leq \frac{\binom{n}{k}}{\frac{1}{2}\binom{2 k}{k}}$
Theorem 3. $c_{t}(n)<\alpha n^{\frac{t-1}{2}}\left(\frac{t+3}{t+2}\right)^{n}$

Lemma 2. $\mathcal{F}$ an $r$-uniform hypergraph, then $\exists \mathcal{F}^{*} \subseteq \mathcal{F}$ such that $\mathcal{F}^{*}$ is $r$-partite and $\left|\mathcal{F}^{*}\right| \geq \frac{r!}{r^{r}}|\mathcal{F}|$
Theorem 4. $f_{3}(n, 7,4)-\frac{2}{5} n \leq c_{2}(n, 3) \leq \frac{9}{2} f_{3}(n, 7,4)+n$
Lemma 3. (F., Frankl) $i(n, H)=\frac{1}{e(H)}\binom{n}{2}-o\left(n^{2}\right)$ where $i(n, H)$ is the maximal number of almost disjoint induced copies of $H$ that can be packed into any $n$-vertex graph.

Theorem 5. $c_{2}(n, 4)=\frac{1}{6} n^{2}-o\left(n^{2}\right)$
Definition 5. $\mathcal{P}=\left\{G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right), \ldots\right\}$ is a packing if all the graphs are edge-disjoint subgraphs of some $G=(V, \mathcal{E})$.
An induced packing is calles almost dijoint induced packing into $G$, if $\left|V_{i} \cap V_{j}\right| \leq 2$ for all $i \neq j$, i.e. any induced $G\left[V_{i}\right], G\left[V_{j}\right]$ are vertex disjoint, share 1 vertex, or the set of their intersection is not a subset of any edge of $G$.

Theorem 6. $c_{2}(n, 2 k) \geq \frac{n^{k}}{(2 k)^{k}}-o\left(n^{k}\right)$
Definition 6. Symmetric polynomial is defined as $\sigma_{i}(X)=\sum_{I \subseteq I,|I|=i} \prod_{\alpha \in I} x_{\alpha}$, where $X=\left\{x_{1}, x_{2}, \ldots x_{s}\right\}, 0 \leq$ $i \leq s$ and $\sigma_{0}(X)=1$.
$5 X_{1}, \ldots X_{l}$ disjoint, $\left|X_{j}\right|=t_{j}, 0<t_{j}<k, \sum_{j}\left(k-t_{j}\right)=k$, matrix $M\left(X_{1}, \ldots X_{l}\right) \ldots$
Observation 3. - $\operatorname{det}\left(M\left(X_{1}, \ldots X_{l}\right)\right)$ is non-vanishing

- $\mathbf{F}_{\mathbf{q}}^{\mathbf{s}}$ a field, $q$ power of a prime, $Z(p)=\left\{\left(x_{1}, \ldots x_{s}\right) \in \mathbf{F}_{\mathbf{q}}^{\mathbf{s}}: p\left(x_{1}, \ldots x_{s}\right)=0\right\}$
- $\mathcal{P}{ }_{<k}=\left\{a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1}: a_{i} \in F\right\}$
- $p_{Z}(x)=\prod_{z \in Z}(x-z)$

Definition 7. $p_{1}(x), \ldots p_{l}(x)$ are $\left(k_{1}, \ldots k_{l}\right)$-independent if $f_{1}(x) p_{1}(x)+\ldots+f_{l}(x) p_{l}(x)=0, \operatorname{deg}\left(f_{i}\right)<k_{i} \rightarrow f_{i}(x)=0$ for all $i$.

- let $l \geq 2, k_{i} \in \mathbb{Z}, \sum k_{i}=k, x_{i} \in \mathbf{F}_{\mathbf{q}}, 1 \leq i \leq(l-1) k$, then multiset

$$
X_{1}=\left\{x_{s}: 1 \leq s \leq k-k_{1}\right\}, \quad X_{j}=\left\{x_{s}: \sum_{i<j}\left(k-k_{i}\right)<s \leq \sum_{i \leq j}\left(k-k_{i}\right)\right\}
$$

Lemma 4. Polynomials $p_{X_{1}}(x), \ldots p_{X_{l}}(x)$ are $\left(k_{1}, \ldots k_{l}\right)$-independent for all but at most $\binom{l k}{2} q^{(l-1) k-1}$ sequences.
Lemma 5. $\forall k \exists q_{0}(k):$ if $q>q_{0}(k)$ then $\exists S \subseteq \mathbf{F}_{\mathbf{q}},|S|=2 k$ such that polynomials

$$
p_{X}(x), p_{Y}(x), p_{W}(x)
$$

are $(k-|X|, k-|Y|, k-|W|)$-independent for each partition

$$
S=X \cup Y \cup W
$$

$1 \leq|X|,|Y|,|W| \leq k,|X|+|Y|+|W|=2 k$.

Theorem 7. $\forall n \geq r \geq 2$ holds: $c(n, r)>\frac{\gamma_{0}}{2^{r}}\binom{n}{r}$, where $\gamma_{0}=\prod_{k \geq 1} \frac{2^{k}-1}{2^{k}}=0,2887 \ldots$

