How to Play Unique Games Using Embeddings

by Eden Chlamtac, Konstantin Makarychev, Yury Makarychev presented by Dušan Knop

Definition 1 (Unique games conjecture). Given a constraint graph G = (V,E) and a set of permutations π_{uv} on [k] (for all edges (u, v)), assign a value (state) x_u from the set [k] to each vertex u so as to satisfy the maximum number of constraints of the form $\pi_{uv}(x_u) = x_v$.

Definition 2. Let X be an ℓ_2^2 space. We say that a distribution over subsets of X is an *m*-orthogonal separator of X with distortion D and probability scale α if the following conditions hold for $S \subset X$ chosen according to this distribution:

- 1. For all u in X, $Pr(u \in S) = \alpha ||u||^2$.
- 2. For all orthogonal vectors u and v in X, $Pr(u \in S \text{ and } v \in S) \leq \frac{\min(Pr(u \in S), Pr(v \in S))}{m}$. Note that the right hand side is at most $\alpha \cdot \frac{\|u\|^2 + \|v\|^2}{2m}$.
- 3. For all u and v in X, $Pr(I_S(u) \neq I_S(v)) \leq \alpha D ||u v||^2$, where I_S is the indicator (characteristic) function of the set S.

Producing orthogonal separators We will proceed in three steps:

- 1. we transform the set X into a set of functions in $L_2[0,1]$, so that the image of every non-zero vector is a function with L_2 norm 1
- 2. we embed the transformed set into the unit sphere in l_1 (l_2) using slightly modified previously known algorithms
- 3. we boost the probability that orthogonal vectors are separated and then we recover the original lengths of all vectors and get rid of the $1/\max(||u||, ||v||)$ term in the distortion

1. Normalization

$$\varphi(u)(t) = \begin{cases} u, \text{ if } t \le 1/\|u\|^2\\ 0, \text{ otherwise} \end{cases}$$

Lemma 1. Let $X \subset \mathbb{R}^d$ be an l_2^2 metric space containing the zero vector. Then

- 1. The image $\varphi(X)$ satisfies triangle inequalities in L_2^2 : $\forall u, v, w \in X \|\varphi(u) \varphi(v)\|^2 + \|\varphi(v) \varphi(w)\|^2 \ge \|\varphi(u) \varphi(w)\|^2$.
- 2. For all vectors u and v in X, $\langle \varphi(u), \varphi(v) \rangle = \frac{\langle u, v \rangle}{\max(||u||^2, ||v||^2)}$.
- 3. For all non-zero vectors u in X, $\|\varphi(u)\|^2 = 1$.
- 4. For all orthogonal u and v in X, the images $\varphi(u)$ and $\varphi(v)$ are also orthogonal.
- 5. For all non-zero vectors u and v in X, $\|\varphi(v) \varphi(u)\|^2 \le \frac{\|v-u\|^2}{\max(\|u\|^2, \|v\|^2)}$.

2. Embedding into ℓ_1 We will use a modification of this well-known theorem:

Theorem 1 (Arora, Lee and Naor). There exist constants $C \ge 1$ and 0 such that $for every finite <math>\ell_2^2$ space X with distance $d(u, v) = ||u - v||^2$ and every $\Delta > 0$, the following holds. There exists a distribution μ over subsets $U \subset X$ such that for every $u, v \in X$ with $d(u, v) \ge \Delta$, $\mu[U: u \in U \text{ and } d(v, U) \ge \frac{\Delta}{C\sqrt{\log |X|}}] \ge p$. **Corollary 1.** There exists an efficient algorithm that, given an ℓ_2^2 space X, generates random subsets Y such that the following conditions hold.

- 1. For every u and v in X, $Pr(I_Y(u) \neq I_Y(v)) \leq D ||u v||^2$.
- 2. For every *u* and *v* s.t. $||u v|| \ge 1$, $Pr(I_Y(u) \ne IY(v)) \ge 2p$,

where $D = O(\sqrt{\log|X|})$.

Approximation algorithm

- 1. Solve the SDP.
- 2. Mark all vertices as unprocessed.
- 3. while (there are unprocessed vertices)
 - (a) Produce an *m*-orthogonal separator S with distortion D and probability scale α , where m = 4k and $D = O(\sqrt{\log n \log m})$.
 - (b) For all unprocessed vertices u:
 - Let $S_u = \{i \colon u_i \in S\}.$
 - If S_u contains exactly one element *i*, then assign the state *i* to *u*, and mark the vertex *u* as processed.
- 4. If the algorithm performs more than n/α iterations, assign arbitrary values to any remaining vertices (note that $\alpha \ge 1/poly(k)$).

Semidefinite relaxation For each vertex u and each state i we introduce a vector u_i . The intended integer solution is as follows. For every vector u_i set $u_i = 1$ if vertex u is assigned state i, otherwise let $u_i = 0$. Thus for a fixed u, only one u_i is not equal to zero. To model this property in the SDP we add the constraint that u_i and u_j are orthogonal for all $i \neq j$ and u; and the constraint $||u_1|| + \cdots + ||u_k|| = 1$ for all u. We also add some triangle inequality constraints.

In the integer solution, if the Unique Game constraint between u and v is satisfied, then $u_i = v_{\pi_{uv}(i)}$ for all $i \in [k]$. On the other hand if the constraint is not satisfied then the equality $u_i = v_{\pi_{uv}(i)}$ is violated for exactly two values of i. Thus the expression $\varepsilon_{uv} = \frac{1}{2} \sum_{i=1}^{k} (u_i - v_{\pi_{uv}(i)})^2$ is equal to 0, if the constraint is satisfied and 1, otherwise. minimize $\frac{1}{2} \sum_{uv \in E} \sum_{i \in [k]} ||u_i - v_{\pi_{uv}(i)}||^2$ subject to

 $u \in V \forall i, j \in [k], i \neq j \qquad \langle u_i, u_j \rangle = 0 \tag{1}$

$$\forall u \in V \qquad \qquad \sum_{i \in [k]} \|u_i\|^2 = 1 \tag{2}$$

$$\forall u, v, w \in V \forall i, j, l \in [k] \quad \|u_i - w_l\|^2 \le \|u_i - v_j\|^2 + \|v_j - w_l\|^2 \tag{3}$$

$$\forall u, v \in V \forall i, j \in [k] \qquad \|u_i - v_j\|^2 \le \|u_i\|^2 + \|v_j\|^2$$
(4)

$$\forall u, v \in V \forall i, j \in [k] \qquad ||u_i||^2 \le ||u_i - v_j||^2 + ||v_j||^2 \tag{5}$$

Lemma 2. There is an algorithm which satisfies the constraint between vertices u and v with probability $1 - O(D\epsilon_{uv})$, where ε_{uv} is the SDP contribution of the term corresponding to the edge (u, v): $\varepsilon_{uv} = \frac{1}{2} \sum_{i \in [k]} ||u_i - v_{\pi_{uv}(i)}||$.

Theorem 2. There exists a randomized polynomial time algorithm that, given an ℓ_2^2 space X containing 0 and a parameter m, returns an m-orthogonal separator of X with distortion D = O(plog|X|logm) and probability scale $\alpha \ge 1/poly(m)$.