Two extensions of Ramsey's theorem
 by David Conlon, Jacob Fox, Benny Sudakov
 presented by Martin Balko

Let $r(k)$ be the minimum n such that in every 2-coloring of the edges of the complete graph K_{n} there is a monochromatic K_{k}. Ramsey's theorem states that $r(k)$ exists for all k. Classical results of Erdős and Szekeres give $2^{k / 2} \leq r(k) \leq 2^{2 k}$ for $k \geq 2$.

The authors consider two strengthenings of Ramsey's theorem. Common to the proofs of both results is a probabilistic argument known as dependent random choice.

Dependent Random Choice

Every dense graph contains a large vertex subset U such that every small subset of U has many common neighbors.

Lemma 1. Suppose $p>0$ and m, s, t, N_{1}, N_{2} are positive integers satisfying $\binom{N_{1}}{s}\left(m / N_{2}\right)^{t} \leq p^{t} N_{1} / 2$. If $G=\left(V_{1}, V_{2}, E\right)$ is a bipartite graph with $\left|V_{i}\right|=N_{i}$ for $i=1,2$ and at least $p N_{1} N_{2}$ edges, then G has a vertex subset $U \subset V_{1}$ such that $|U| \geq p^{t} N_{1} / 2$ and every s vertices in U have at least m common neighbors.

1 Ramsey's theorem with skewed vertex distribution

Definitions:

- The weight $w(S)$ of a finite set S of integers greater than one is defined as $w(S)=\sum_{s \in S} \frac{1}{\log s}$.
- For a red-blue edge-coloring c of the complete graph on $\{2, \ldots, n\}$, let $f(c)$ be the maximum weight $w(S)$ over all $S \subset\{2, \ldots, n\}$ which form a monochromatic clique in coloring c.
- For $n \geq 2$, let $f(n)$ be the minimum of $f(c)$ over all red-blue edge-colorings c of the edges of the complete graph on $\{2, \ldots, n\}$.

In 1981 Erdős conjectured that $f(n)$ tends to infinity and asked for an accurate estimate of $f(n)$.

Known:

- $f(n)=\Omega\left(\frac{\log \log \log \log n}{\log \log \log \log \log n}\right), f(n)=O(\log \log \log n)$ [Rödl, 2003]

Theorem 1. For n sufficiently large, every red-blue edge-coloring of the edges of the complete graph on the interval $\{2, \ldots, n\}$ contains a monochromatic clique with vertex set S such that

$$
\sum_{s \in S} \frac{1}{\log s} \geq 2^{-8} \log \log \log n
$$

Hence, $f(n)=\Theta(\log \log \log n)$.
Lemma 2. Suppose that the edges of K_{n} have been two-colored in red and blue and that each vertex v has been given positive weights r_{v} and b_{v} satisfying $b_{v} \geq \ln \left(4 / r_{v}\right)$ if $r_{v} \leq b_{v}$ and $r_{v} \geq \ln \left(4 / b_{v}\right)$ if $b_{v} \leq r_{v}$. Then there exists either a red clique K for which $\sum_{v \in K} r_{v} \geq \frac{1}{2} \ln n$ or a blue clique L for which $\sum_{v \in L} b_{v} \geq \frac{1}{2} \ln n$.

Additional Remarks:

- If the limit $\lim _{n \rightarrow \infty} \frac{\log r(n)}{n}$ exists, denote it by c_{0}. We know that $\frac{1}{2} \leq c_{0} \leq 2$.

Conjecture 1. We have $f(n)=\left(c_{0}^{-2}+o(1)\right) \log \log \log n$.
The construction of Rödl can be modified to obtain $f(n) \leq\left(c_{0}^{-2}+o(1)\right) \log \log \log n$ and a modification of the proof of Theorem 1 gives $f(n) \geq\left(\frac{1}{4}-o(1)\right) \log \log \log n$.

- Can we find cliques of large weight for other weight functions? Let $w(i)$ be a weight function defined on all positive integers $n \geq a$ and let $f(n, w)$ be the minimum over all 2-colorings of $\{a, \ldots, n\}$ of the maximum weight of a monochromatic clique.

Theorem 2. Let $\log _{(i)}(x)$ be the iterated logarithm given by $\log _{(0)}(x)=x$ and, for $i \geq 1, \log _{(i)}(x)=$ $\log \left(\log _{(i-1)}(x)\right)$. Let $w_{s}(i)=1 / \prod_{j=1}^{s} \log _{(2 j-1)} i$. Then $f\left(n, w_{s}\right)=\Theta\left(\log _{(2 s+1)} n\right)$.However, letting $w_{s}^{\prime}(i)=w_{s}(i) /\left(\log _{(2 s-1)} i\right)^{\epsilon}$ for any fixed $\epsilon>0$, then $f\left(n, w_{s}^{\prime}\right)$ converges.

- Unlike the graph case, there are colorings for which the maximum weight of a monochromatic clique is bounded in the case of 3 -uniform hypergraphs. The analogue of Erdős' conjecture for 3-colorings of graphs also does not hold.

2 Ramsey's theorem with fixed order type

Jouko Väänänen asked whether, for any positive integers k and q and any permutation π of $[k-1]$, there is a positive integer R such that for any q-coloring of the edges of the complete graph on vertex set $[R]$ there is a monochromatic K_{k} with vertices $a_{1}<\ldots<a_{k}$ satisfying

$$
a_{\pi(1)+1}-a_{\pi(1)}>a_{\pi(2)+1}-a_{\pi(2)}>\ldots>a_{\pi(k-1)+1}-a_{\pi(k-1)} .
$$

The least such integer is denoted by $R_{\pi}(k ; q)$. We let $R(k ; q)=\max _{\pi} R_{\pi}(k ; q)$.

Known:

- The question was positively answered by Noga Alon (a weak bound on $R(k ; q)$) and, independently, by Erdős, Hajnal and Pach in 1997 (no bound on $R(k ; q)$).
- Alon and Spencer showed that $R(k ; q)$ should grow exponentially in k for monotone sequences.
- The double-exponential upper bound $\left.R(k ; q) \leq 2^{\left(q(k+1)^{3}\right.}\right)^{q k}$ holds [Shelah, 1997].

Theorem 3. For any positive integers k and $q, R(k ; q) \leq 2^{k^{20 q}}$ holds.

Definitions:

- An interval I of integers is a set of consecutive integers. Let $S \subset \mathbb{Z}$ be nonempty. The density $d_{I}(S)$ of S with respect to an interval I with $S \subset I$ is $|S| /|I|$.
- An ordered pair $\left(T_{1}, T_{2}\right)$ of sets of integers is separated if, for $j=1,2$,

$$
\min \left(T_{2}\right)-\max \left(T_{1}\right)>\max \left(T_{j}\right)-\min \left(T_{j}\right) .
$$

- Let G be a graph on a subset of integers, J be an interval, and $S \subset J \cap V(G)$. For $0<\alpha, \beta, \gamma, \delta, p<1$, we say that G is $(\alpha, \beta, \gamma, \delta, p)$-heavy with respect to S if for all $S^{\prime} \subset S$ for which there is an interval J^{\prime} with $S^{\prime} \subset J^{\prime}, d_{J^{\prime}}\left(S^{\prime}\right) \geq \delta d_{J}(S)$, and $\left|S^{\prime}\right| \geq \gamma|S|$, there are $T_{1}, T_{2} \subset S^{\prime}$ and, for $j=1,2$, intervals I_{j} with $T_{j} \subset I_{j}$ such that $\left(T_{1}, T_{2}\right)$ is a separated pair, $d_{I_{j}}\left(T_{j}\right) \geq \alpha d_{J^{\prime}}\left(S^{\prime}\right),\left|I_{j}\right| \geq \beta\left|S^{\prime}\right|$ and the edge density of G across T_{1}, T_{2} is at least p.
- Let $\phi:[h-1] \rightarrow[k-1]$ be an injective function, $0<\eta<1$ and $r \in \mathbb{N}$. A clique of type (ϕ, η, r) consists of h pairwise adjacent vertices a_{1}, \ldots, a_{h} such that $a_{i+1}-a_{i} \in\left[\eta^{\phi(i)} r, \eta^{\phi(i)-1} r\right)$ for $i \in[h-1]$.
Lemma 3. Suppose G is a graph on a subset of the integers, J is an interval, $S \subset J \cap V(G), \phi:[h-1] \rightarrow$ $[k-1]$ is an injective function, $0<\alpha, \beta, \gamma, \delta, p<1$, and $r \in \mathbb{N}$. Let $t=2 \sqrt{k \log _{1 / p}|S|}, \epsilon=p^{t} / 2, \lambda=\left(\frac{\epsilon \alpha}{4}\right)^{2 h}$, and $\kappa=\lambda \beta d_{J}(S)^{2} \eta^{k} r$. Provided that $\kappa \geq h,|J| \geq r, \eta \leq \beta d_{J}(S)^{2}, \delta \leq \lambda$, and $\gamma|S| \leq \kappa$, the following holds. If G is $(\alpha, \beta, \gamma, \delta, p)$-heavy with respect to S then there is a clique in G of type (ϕ, η, r).

Additional Remarks:

- The natural hypergraph analogue of Väänänen's question fails.
- For certain π there exist 2-edge-colorings of the complete graph on positive integers in which none of the sequences $a_{1}<\ldots<a_{k}$ satisfying

$$
a_{\pi(1)+2}-a_{\pi(1)}>a_{\pi(2)+2}-a_{\pi(2)}>\ldots>a_{\pi(k-2)+2}-a_{\pi(k-2)} .
$$

form a monochromatic clique.

