Two extensions of Ramsey's theorem

by David Conlon, Jacob Fox, Benny Sudakov

presented by Martin Balko

Let r(k) be the minimum n such that in every 2-coloring of the edges of the complete graph K_n there is a monochromatic K_k . Ramsey's theorem states that r(k) exists for all k. Classical results of Erdős and Szekeres give $2^{k/2} \leq r(k) \leq 2^{2k}$ for $k \geq 2$.

The authors consider two strengthenings of Ramsey's theorem. Common to the proofs of both results is a probabilistic argument known as dependent random choice.

Dependent Random Choice

Every dense graph contains a large vertex subset U such that every small subset of U has many common neighbors.

Lemma 1. Suppose p > 0 and m, s, t, N_1 , N_2 are positive integers satisfying $\binom{N_1}{s} (m/N_2)^t \leq p^t N_1/2$. If $G = (V_1, V_2, E)$ is a bipartite graph with $|V_i| = N_i$ for i = 1, 2 and at least pN_1N_2 edges, then G has a vertex subset $U \subset V_1$ such that $|U| \geq p^t N_1/2$ and every s vertices in U have at least m common neighbors.

1 Ramsey's theorem with skewed vertex distribution

Definitions:

- The weight w(S) of a finite set S of integers greater than one is defined as $w(S) = \sum_{s \in S} \frac{1}{\log s}$.
- For a red-blue edge-coloring c of the complete graph on $\{2, \ldots, n\}$, let f(c) be the maximum weight w(S) over all $S \subset \{2, \ldots, n\}$ which form a monochromatic clique in coloring c.
- For $n \ge 2$, let f(n) be the minimum of f(c) over all red-blue edge-colorings c of the edges of the complete graph on $\{2, \ldots, n\}$.

In 1981 Erdős conjectured that f(n) tends to infinity and asked for an accurate estimate of f(n).

Known:

•
$$f(n) = \Omega\left(\frac{\log\log\log\log\log n}{\log\log\log\log n}\right), f(n) = O\left(\log\log\log n\right)$$
 [Rödl, 2003]

Theorem 1. For n sufficiently large, every red-blue edge-coloring of the edges of the complete graph on the interval $\{2, ..., n\}$ contains a monochromatic clique with vertex set S such that

$$\sum_{s \in S} \frac{1}{\log s} \ge 2^{-8} \log \log \log n.$$

Hence, $f(n) = \Theta(\log \log \log n)$.

Lemma 2. Suppose that the edges of K_n have been two-colored in red and blue and that each vertex v has been given positive weights r_v and b_v satisfying $b_v \ge \ln(4/r_v)$ if $r_v \le b_v$ and $r_v \ge \ln(4/b_v)$ if $b_v \le r_v$. Then there exists either a red clique K for which $\sum_{v \in K} r_v \ge \frac{1}{2} \ln n$ or a blue clique L for which $\sum_{v \in L} b_v \ge \frac{1}{2} \ln n$.

Additional Remarks:

• If the limit $\lim_{n\to\infty} \frac{\log r(n)}{n}$ exists, denote it by c_0 . We know that $\frac{1}{2} \le c_0 \le 2$.

Conjecture 1. We have $f(n) = (c_0^{-2} + o(1)) \log \log \log n$.

The construction of Rödl can be modified to obtain $f(n) \leq (c_0^{-2} + o(1)) \log \log \log n$ and a modification of the proof of Theorem 1 gives $f(n) \geq (\frac{1}{4} - o(1)) \log \log \log n$.

• Can we find cliques of large weight for other weight functions? Let w(i) be a weight function defined on all positive integers $n \ge a$ and let f(n, w) be the minimum over all 2-colorings of $\{a, \ldots, n\}$ of the maximum weight of a monochromatic clique.

Theorem 2. Let $\log_{(i)}(x)$ be the iterated logarithm given by $\log_{(0)}(x) = x$ and, for $i \ge 1$, $\log_{(i)}(x) = \log\left(\log_{(i-1)}(x)\right)$. Let $w_s(i) = 1/\prod_{j=1}^s \log_{(2j-1)} i$. Then $f(n, w_s) = \Theta\left(\log_{(2s+1)} n\right)$. However, letting $w'_s(i) = w_s(i) / \left(\log_{(2s-1)} i\right)^{\epsilon}$ for any fixed $\epsilon > 0$, then $f(n, w'_s)$ converges.

• Unlike the graph case, there are colorings for which the maximum weight of a monochromatic clique is bounded in the case of 3-uniform hypergraphs. The analogue of Erdős' conjecture for 3-colorings of graphs also does not hold.

2 Ramsey's theorem with fixed order type

Jouko Väänänen asked whether, for any positive integers k and q and any permutation π of [k-1], there is a positive integer R such that for any q-coloring of the edges of the complete graph on vertex set [R] there is a monochromatic K_k with vertices $a_1 < \ldots < a_k$ satisfying

 $a_{\pi(1)+1} - a_{\pi(1)} > a_{\pi(2)+1} - a_{\pi(2)} > \ldots > a_{\pi(k-1)+1} - a_{\pi(k-1)}.$

The least such integer is denoted by $R_{\pi}(k;q)$. We let $R(k;q) = \max_{\pi} R_{\pi}(k;q)$.

Known:

- The question was positively answered by Noga Alon (a weak bound on R(k;q)) and, independently, by Erdős, Hajnal and Pach in 1997 (no bound on R(k;q)).
- Alon and Spencer showed that R(k;q) should grow exponentially in k for monotone sequences.
- The double-exponential upper bound $R(k;q) \leq 2^{(q(k+1)^3)^{qk}}$ holds [Shelah, 1997].

Theorem 3. For any positive integers k and q, $R(k;q) \leq 2^{k^{20q}}$ holds.

Definitions:

- An interval I of integers is a set of consecutive integers. Let $S \subset \mathbb{Z}$ be nonempty. The density $d_I(S)$ of S with respect to an interval I with $S \subset I$ is |S| / |I|.
- An ordered pair (T_1, T_2) of sets of integers is *separated* if, for j = 1, 2,

$$\min\left(T_{2}\right) - \max\left(T_{1}\right) > \max\left(T_{j}\right) - \min\left(T_{j}\right).$$

- Let G be a graph on a subset of integers, J be an interval, and $S \subset J \cap V(G)$. For $0 < \alpha, \beta, \gamma, \delta, p < 1$, we say that G is $(\alpha, \beta, \gamma, \delta, p)$ -heavy with respect to S if for all $S' \subset S$ for which there is an interval J' with $S' \subset J', d_{J'}(S') \ge \delta d_J(S)$, and $|S'| \ge \gamma |S|$, there are $T_1, T_2 \subset S'$ and, for j = 1, 2, intervals I_j with $T_j \subset I_j$ such that (T_1, T_2) is a separated pair, $d_{I_j}(T_j) \ge \alpha d_{J'}(S')$, $|I_j| \ge \beta |S'|$ and the edge density of G across T_1, T_2 is at least p.
- Let $\phi: [h-1] \to [k-1]$ be an injective function, $0 < \eta < 1$ and $r \in \mathbb{N}$. A clique of type (ϕ, η, r) consists of h pairwise adjacent vertices a_1, \ldots, a_h such that $a_{i+1} a_i \in [\eta^{\phi(i)}r, \eta^{\phi(i)-1}r)$ for $i \in [h-1]$.

Lemma 3. Suppose G is a graph on a subset of the integers, J is an interval, $S \subset J \cap V(G)$, $\phi: [h-1] \rightarrow [k-1]$ is an injective function, $0 < \alpha, \beta, \gamma, \delta, p < 1$, and $r \in \mathbb{N}$. Let $t = 2\sqrt{k \log_{1/p} |S|}$, $\epsilon = p^t/2$, $\lambda = \left(\frac{\epsilon \alpha}{4}\right)^{2h}$, and $\kappa = \lambda \beta d_J(S)^2 \eta^k r$. Provided that $\kappa \ge h$, $|J| \ge r$, $\eta \le \beta \lambda d_J(S)^2$, $\delta \le \lambda$, and $\gamma |S| \le \kappa$, the following holds. If G is $(\alpha, \beta, \gamma, \delta, p)$ -heavy with respect to S then there is a clique in G of type (ϕ, η, r) .

Additional Remarks:

- The natural hypergraph analogue of Väänänen's question fails.
- For certain π there exist 2-edge-colorings of the complete graph on positive integers in which none of the sequences $a_1 < \ldots < a_k$ satisfying

$$a_{\pi(1)+2} - a_{\pi(1)} > a_{\pi(2)+2} - a_{\pi(2)} > \ldots > a_{\pi(k-2)+2} - a_{\pi(k-2)}.$$

form a monochromatic clique.