The critical window for the classical Ramsey-Turán problem

by Jacob Fox, Po-Shen Loh, Yufei Zhao

presented by Martin Balko
For a graph H and positive integers n and m, the Ramsey-Turán number $\mathbf{R T}(n, H, m)$ is the maximum number of edges a graph G on n vertices with independence number less than m can have without containing H as a subgraph. The first application of Szemerédi's powerful regularity method was the following celebrated Ramsey-Turán result.
Theorem 1 (Szemerédi, 1972). For every $\epsilon>0$, there is a $\delta>0$ for which every n-vertex graph with at least $\left(\frac{1}{8}+\epsilon\right) n^{2}$ edges contains either a K_{4} or an independent set larger than δn.

Later, Bollobás and Erdős gave a geometric construction of a K_{4}-free graph on n vertices with independence number $o(n)$ and $\left(\frac{1}{8}-o(1)\right) n^{2}$ edges. Since then, several problems have been asked on estimating the minimum possible independence number in the critical window, when the number of edges is about $\frac{n^{2}}{8}$. In this paper, the authors give nearly best-possible bounds, solving the various open problems concerning the critical window.

The first result is a new proof of Theorem 1 which gives a much better bound and completely avoids using the regularity lemma or any notion similar to regularity.
Theorem 2. For every α and n, every n-vertex graph with at least $\frac{n^{2}}{8}+10^{10} \alpha n$ edges contains either a copy of K_{4} or an independent set of size greater than α.

The second result sharpens the linear dependence down to a very reasonable constant.
Theorem 3. There is an absolute positive constant γ_{0} such that for every $\alpha<\gamma_{0} n$ every n-vertex graph with at least $\frac{n^{2}}{8}+\frac{3}{2} \alpha n$ edges contains a copy of K_{4} or an independent set of size greater than α.

The authors also prove the following corresponding lower bound, which shows that the linear dependence in Theorem 3 is best possible.
Theorem 4. For $\frac{(\log \log n)^{3 / 2}}{(\log n)^{1 / 2}} \cdot n \ll m \leq \frac{n}{3}$, we have $\mathbf{R T}\left(n, K_{4}, m\right) \geq \frac{n^{2}}{8}+\left(\frac{1}{3}-o(1)\right) m n$.
By introducing a new twist on the dependent random choice technique, the authors substantially improve the lower bound on the independence number at the critical point of exactly $\frac{n^{2}}{8}$ edges.
Theorem 5. There is an absolute positive constant c such that every n-vertex graph with at least $\frac{n^{2}}{8}$ edges contains a copy of K_{4} or an independent set of size greater than cn $\cdot \frac{\log \log n}{\log n}$.

Modifying the Bollobás-Erdős graph, we also get an upper bound on this problem.
Theorem 6. There is an absolute positive constant c^{\prime} such that for each positive integer n, there is an n-vertex K_{4}-free graph with at least $\frac{n^{2}}{8}$ edges and independence number at most $c^{\prime} n \cdot \frac{(\log \log n)^{3 / 2}}{(\log n)^{1 / 2}}$.

The following result shows that the Bollobás-Erdős graph gives a good lower bound for the RamseyTurán numbers in the lower part of the critical window, nearly matching the upper bounds established using dependent random choice.
Theorem 7. If $m=e^{-o\left((\log n / \log \log n)^{1 / 2}\right)} n$, then $\mathbf{R T}\left(n, K_{4}, m\right) \geq(1 / 8-o(1)) n^{2}$.

1 The new proof of Theorem 1

The standard regularity proof

Definitions:

- The edge density $d(X, Y)$ between two subsets of vertices of a graph G is the fraction of pairs $(x, y) \in$ $X \times Y$ that are edges of G.
- A pair (X, Y) of vertex sets is called ϵ-regular if for all $X^{\prime} \subset X$ and $Y^{\prime} \subset Y$ with $\left|X^{\prime}\right| \geq \epsilon|X|$ and $\left|Y^{\prime}\right| \geq \epsilon|Y|$, we have $\left|d\left(X^{\prime}, Y^{\prime}\right)-d(X, Y)\right|<\epsilon$.
- A partition $V=V_{1} \cup \ldots \cup V_{t}$ is called equitable if $\| V_{i}\left|-\left|V_{j}\right|\right| \leq 1$ for all i and j.

The regularity lemma states that for each $\epsilon>0$, there is a positive integer $M(\epsilon)$ such that the vertices of any graph G can be equitably partitioned $V=V_{1} \cup \ldots \cup V_{t}$ into $\frac{1}{\epsilon} \leq t \leq M(\epsilon)$ parts where all but at most ϵt^{2} of the pairs $\left(V_{i}, V_{j}\right)$ are ϵ-regular.

The standard regularity proof

Lemma 1. Let $t, \gamma>0$ satisfy $\gamma t \leq 1$. If G is a K_{4}-free graph on n vertices with independence number at most γn, and X and Y are disjoint vertex subsets of size n / t, then the edge density between X and Y is at most $\frac{1}{2}+\gamma t$.

Lemma 2. Suppose that X, Y, and Z are disjoint subsets of size m, and each of the three pairs are ϵ-regular with edge density at least 3ϵ. Then there is either a K_{4} or an independent set of size at least $4 \epsilon^{2} m$.

The new proof

Theorem 8 (Erdős, Simonovits). For every $\epsilon>0$, there is a $\delta>0$ such that every n-vertex triangle-free graph with more than $\left(\frac{1}{4}-\delta\right) n^{2}$ edges is within edit distance ϵn^{2} from a complete bipartite graph.
Lemma 3. For every $c>0$ there is a $\gamma>0$ such that every K_{4}-free graph G on n vertices with at least $\frac{n^{2}}{8}$ edges and independence number at most γn has a cut which has at most cn ${ }^{2}$ non-crossing edges.

Lemma 4. Let G be an n-vertex graph with at least m edges. Then G contains an induced subgraph G^{\prime} with $n^{\prime}>2 m / n$ vertices, at least $n^{\prime} \frac{m}{n}$ edges, and minimum degree at least $\frac{m}{n}$.

Lemma 5. Let G be a K_{4}-free graph on n vertices, at least $\frac{n^{2}}{8}$ edges, and independence number at most $\alpha \leq c n$. Suppose its vertices have been partitioned into $L \cup R$, and $e(L)+e(R) \leq c n^{2}$. Then $|L|$ and $|R|$ are both within the range $\left(\frac{1}{2} \pm \sqrt{3 c}\right) n$.

Lemma 6. Let G be a K_{4}-free graph on n vertices with minimum degree at least $c n$ and independence number at most $\alpha \leq \frac{c n}{36}$. Let $L \cup R$ be a max-cut with $\frac{n}{3} \leq|R| \leq \frac{2 n}{3}$. Let $T \subset L$ be the vertices with R-degree greater than $\left(\frac{1}{2}-\frac{c}{8}\right)|R|$. Then every vertex of L has at most α neighbors in T.

Lemma 7. For any $0<c<1$, the following holds with $c^{\prime}=c^{2} / 800$. Assume $\alpha<c n / 300$. Let G be a K_{4}-free graph on n vertices with at least $\frac{n^{2}}{8}+\frac{3 \alpha n}{2}$ edges, and minimum degree at least cn. Suppose that the max-cut of G partitions the vertex set into $L \cup R$ such that $e(L)+e(R) \leq c^{\prime} n^{2}$. Then G either has a copy of K_{4}, or an independent set of size greater than α.

2 Quantitative bounds on the Bollobás-Erdős construction

Call a graph $G=(V, E)$ on n vertices nice if it is K_{4}-free and there is a bipartition $V=X \cup Y$ into parts of order $n / 2$ such that each part is K_{3}-free.

Theorem 9. There exists some universal constant $C>0$ such that for every $0<\epsilon<1$, positive integer $h \geq 16$ and even integer $n \geq(C \sqrt{h} / \epsilon)^{h}$, there exists a nice graph on n vertices, with independence number at most $2 n e^{-\epsilon \sqrt{h} / 4}$, and minimum degree at least $(1 / 4-2 \epsilon) n$.

Theorem 10 (Schmidt, 1948). Let $l \in[0,2]$ and h be a positive integer. If $A \subset \mathbb{S}^{h-1}$ is an arbitrary measurable set with diameter at most l and B a spherical cap in \mathbb{S}^{h-1} with diameter l, then $\lambda(A) \leq \lambda(B)$ (where λ is the Lebesgue measure).

Corollary 1 (Simonovits, Sós, 2001). Let $\mu \in[0,1)$. If $A \subset \mathbb{S}^{h-1}$ is any measurable set with diameter at most $2-\mu$, then $\lambda(A) \leq 2 e^{-\mu h / 2}$ (here λ is normalized to 1 on \mathbb{S}^{h-1})

Lemma 8. Let $h \geq 5$ be positive integer, and $\epsilon>0$. Let B be the spherical cap in \mathbb{S}^{h-1} consisting of all points with distance at most $\sqrt{2}-\frac{\epsilon}{\sqrt{h}}$ from some fixed point. Then $\lambda(B) \geq \frac{1}{2}-\sqrt{2} \epsilon$.

Let $S(m, n)$ be the maximum number of edges of a nice graph on n vertices with independence number less than m. Note that $\mathbf{R T}\left(n, K_{4}, m\right) \geq S(m, n)$.

Corollary 2. For n sufficiently large and $\delta=4(\log \log n)^{3 / 2} /(\log n)^{1 / 2}$, we have $\mathbf{R T}\left(n, K_{4}, \delta n\right) \geq S(n, \delta n) \geq$ $(1 / 8-\delta) n^{2}$.

Lemma 9. For positive integers d, m, n with $n \geq 6$ even and $d \leq n / 2$, we have $S(n, m+d) \geq\left(1-\frac{2 d}{n}\right)^{2} S(n, m)+$ $d n-d^{2}-n$.
Corollary 3. For even $n \geq 6$, if $S(n, m) \geq\left(\frac{1}{8}-\delta\right) n^{2}$ with $n^{-1 / 2} \leq \delta \leq \frac{1}{4}$, then $S(n, m+2 \delta n) \geq \frac{n^{2}}{8}$.
Corollary 4. For even $n \geq 6$, if $S(n, m) \geq\left(\frac{1}{8}-\delta\right) n^{2}$ and $\frac{1}{\delta n} \leq a \leq \frac{1}{2}$, then $S(n, m+a n) \geq \frac{n^{2}}{8}(1+4 a-$ $4 a^{2}-8 \delta$).

