The critical window for the classical Ramsey-Turán problem

by Jacob Fox, Po-Shen Loh, Yufei Zhao

presented by Martin Balko

For a graph H and positive integers n and m, the Ramsey-Turán number $\mathbf{RT}(n, H, m)$ is the maximum number of edges a graph G on n vertices with independence number less than m can have without containing H as a subgraph. The first application of Szemerédi's powerful regularity method was the following celebrated Ramsey-Turán result.

Theorem 1 (Szemerédi, 1972). For every $\epsilon > 0$, there is a $\delta > 0$ for which every n-vertex graph with at least $(\frac{1}{8} + \epsilon)n^2$ edges contains either a K_4 or an independent set larger than δn .

Later, Bollobás and Erdős gave a geometric construction of a K_4 -free graph on n vertices with independence number o(n) and $(\frac{1}{8} - o(1))n^2$ edges. Since then, several problems have been asked on estimating the minimum possible independence number in the critical window, when the number of edges is about $\frac{n^2}{8}$. In this paper, the authors give nearly best-possible bounds, solving the various open problems concerning the critical window.

The first result is a new proof of Theorem 1 which gives a much better bound and completely avoids using the regularity lemma or any notion similar to regularity.

Theorem 2. For every α and n, every n-vertex graph with at least $\frac{n^2}{8} + 10^{10} \alpha n$ edges contains either a copy of K_4 or an independent set of size greater than α .

The second result sharpens the linear dependence down to a very reasonable constant.

Theorem 3. There is an absolute positive constant γ_0 such that for every $\alpha < \gamma_0 n$ every *n*-vertex graph with at least $\frac{n^2}{8} + \frac{3}{2}\alpha n$ edges contains a copy of K_4 or an independent set of size greater than α .

The authors also prove the following corresponding lower bound, which shows that the linear dependence in Theorem 3 is best possible.

Theorem 4. For $\frac{(\log \log n)^{3/2}}{(\log n)^{1/2}} \cdot n \ll m \leq \frac{n}{3}$, we have $\mathbf{RT}(n, K_4, m) \geq \frac{n^2}{8} + (\frac{1}{3} - o(1))mn$.

By introducing a new twist on the dependent random choice technique, the authors substantially improve the lower bound on the independence number at the critical point of exactly $\frac{n^2}{8}$ edges.

Theorem 5. There is an absolute positive constant c such that every n-vertex graph with at least $\frac{n^2}{8}$ edges contains a copy of K_4 or an independent set of size greater than $cn \cdot \frac{\log \log n}{\log n}$.

Modifying the Bollobás-Erdős graph, we also get an upper bound on this problem.

Theorem 6. There is an absolute positive constant c' such that for each positive integer n, there is an n-vertex K_4 -free graph with at least $\frac{n^2}{8}$ edges and independence number at most $c'n \cdot \frac{(\log \log n)^{3/2}}{(\log n)^{1/2}}$.

The following result shows that the Bollobás-Erdős graph gives a good lower bound for the Ramsey-Turán numbers in the lower part of the critical window, nearly matching the upper bounds established using dependent random choice.

Theorem 7. If $m = e^{-o((\log n / \log \log n)^{1/2})}n$, then $\mathbf{RT}(n, K_4, m) \ge (1/8 - o(1))n^2$.

1 The new proof of Theorem 1

The standard regularity proof

Definitions:

- The edge density d(X, Y) between two subsets of vertices of a graph G is the fraction of pairs $(x, y) \in X \times Y$ that are edges of G.
- A pair (X, Y) of vertex sets is called ϵ -regular if for all $X' \subset X$ and $Y' \subset Y$ with $|X'| \ge \epsilon |X|$ and $|Y'| \ge \epsilon |Y|$, we have $|d(X', Y') d(X, Y)| < \epsilon$.
- A partition $V = V_1 \cup \ldots \cup V_t$ is called *equitable* if $||V_i| |V_j|| \le 1$ for all i and j.

The regularity lemma states that for each $\epsilon > 0$, there is a positive integer $M(\epsilon)$ such that the vertices of any graph G can be equitably partitioned $V = V_1 \cup \ldots \cup V_t$ into $\frac{1}{\epsilon} \leq t \leq M(\epsilon)$ parts where all but at most ϵt^2 of the pairs (V_i, V_j) are ϵ -regular.

The standard regularity proof

Lemma 1. Let $t, \gamma > 0$ satisfy $\gamma t \leq 1$. If G is a K₄-free graph on n vertices with independence number at most γn , and X and Y are disjoint vertex subsets of size n/t, then the edge density between X and Y is at most $\frac{1}{2} + \gamma t$.

Lemma 2. Suppose that X, Y, and Z are disjoint subsets of size m, and each of the three pairs are ϵ -regular with edge density at least 3ϵ . Then there is either a K_4 or an independent set of size at least $4\epsilon^2 m$.

The new proof

Theorem 8 (Erdős, Simonovits). For every $\epsilon > 0$, there is a $\delta > 0$ such that every *n*-vertex triangle-free graph with more than $(\frac{1}{4} - \delta) n^2$ edges is within edit distance ϵn^2 from a complete bipartite graph.

Lemma 3. For every c > 0 there is a $\gamma > 0$ such that every K_4 -free graph G on n vertices with at least $\frac{n^2}{8}$ edges and independence number at most γn has a cut which has at most cn^2 non-crossing edges.

Lemma 4. Let G be an n-vertex graph with at least m edges. Then G contains an induced subgraph G' with n' > 2m/n vertices, at least $n'\frac{m}{n}$ edges, and minimum degree at least $\frac{m}{n}$.

Lemma 5. Let G be a K_4 -free graph on n vertices, at least $\frac{n^2}{8}$ edges, and independence number at most $\alpha \leq cn$. Suppose its vertices have been partitioned into $L \cup R$, and $e(L) + e(R) \leq cn^2$. Then |L| and |R| are both within the range $(\frac{1}{2} \pm \sqrt{3c}) n$.

Lemma 6. Let G be a K_4 -free graph on n vertices with minimum degree at least cn and independence number at most $\alpha \leq \frac{cn}{36}$. Let $L \cup R$ be a max-cut with $\frac{n}{3} \leq |R| \leq \frac{2n}{3}$. Let $T \subset L$ be the vertices with R-degree greater than $(\frac{1}{2} - \frac{c}{8})|R|$. Then every vertex of L has at most α neighbors in T.

Lemma 7. For any 0 < c < 1, the following holds with $c' = c^2/800$. Assume $\alpha < cn/300$. Let G be a K_4 -free graph on n vertices with at least $\frac{n^2}{8} + \frac{3\alpha n}{2}$ edges, and minimum degree at least cn. Suppose that the max-cut of G partitions the vertex set into $L \cup R$ such that $e(L) + e(R) \le c'n^2$. Then G either has a copy of K_4 , or an independent set of size greater than α .

2 Quantitative bounds on the Bollobás-Erdős construction

Call a graph G = (V, E) on *n* vertices *nice* if it is K_4 -free and there is a bipartition $V = X \cup Y$ into parts of order n/2 such that each part is K_3 -free.

Theorem 9. There exists some universal constant C > 0 such that for every $0 < \epsilon < 1$, positive integer $h \ge 16$ and even integer $n \ge \left(C\sqrt{h}/\epsilon\right)^h$, there exists a nice graph on n vertices, with independence number at most $2ne^{-\epsilon\sqrt{h}/4}$, and minimum degree at least $(1/4 - 2\epsilon)n$.

Theorem 10 (Schmidt, 1948). Let $l \in [0,2]$ and h be a positive integer. If $A \subset \mathbb{S}^{h-1}$ is an arbitrary measurable set with diameter at most l and B a spherical cap in \mathbb{S}^{h-1} with diameter l, then $\lambda(A) \leq \lambda(B)$ (where λ is the Lebesgue measure).

Corollary 1 (Simonovits, Sós, 2001). Let $\mu \in [0, 1)$. If $A \subset \mathbb{S}^{h-1}$ is any measurable set with diameter at most $2 - \mu$, then $\lambda(A) \leq 2e^{-\mu h/2}$ (here λ is normalized to 1 on \mathbb{S}^{h-1})

Lemma 8. Let $h \ge 5$ be positive integer, and $\epsilon > 0$. Let B be the spherical cap in \mathbb{S}^{h-1} consisting of all points with distance at most $\sqrt{2} - \frac{\epsilon}{\sqrt{h}}$ from some fixed point. Then $\lambda(B) \ge \frac{1}{2} - \sqrt{2}\epsilon$.

Let S(m, n) be the maximum number of edges of a nice graph on n vertices with independence number less than m. Note that $\mathbf{RT}(n, K_4, m) \ge S(m, n)$.

Corollary 2. For n sufficiently large and $\delta = 4(\log \log n)^{3/2}/(\log n)^{1/2}$, we have $\mathbf{RT}(n, K_4, \delta n) \ge S(n, \delta n) \ge (1/8 - \delta)n^2$.

Lemma 9. For positive integers d, m, n with $n \ge 6$ even and $d \le n/2$, we have $S(n, m+d) \ge \left(1 - \frac{2d}{n}\right)^2 S(n, m) + dn - d^2 - n$.

Corollary 3. For even $n \ge 6$, if $S(n,m) \ge (\frac{1}{8} - \delta)n^2$ with $n^{-1/2} \le \delta \le \frac{1}{4}$, then $S(n,m+2\delta n) \ge \frac{n^2}{8}$.

Corollary 4. For even $n \ge 6$, if $S(n,m) \ge (\frac{1}{8} - \delta)n^2$ and $\frac{1}{\delta n} \le a \le \frac{1}{2}$, then $S(n,m+an) \ge \frac{n^2}{8}(1 + 4a - 4a^2 - 8\delta)$.