Small Complete Minors Above the Extremal Edge Density by Asaf Shapira and Benny Sudakov

March 25, 2013

Definition. G graph, subgraph H of G is a *minor* of G if it can be obtained from G by a sequence of edge and vertex deletions and contractions.

 K_t -minor of a graph G: connected subgraphs S_1, \ldots, S_t of G, such that there exist internally disjoint paths $P_{i,j}$ joining each S_i, S_j .

Definition. $c(t) = min\{c : d(t) \ge c \implies Ghas \ a \ K_t minor\}$

THE RESULT:

Theorem. 1. For all $\epsilon > 0$, integer t, $\exists n_0(\epsilon, t)$ such that each graph G fulfilling $|V(G)| \ge n_0$ and $d(G) \ge c(t) + \epsilon$ has a K_t -minor of order at most $O(\frac{c(t)t^2}{\epsilon} \log(n) \log\log(n))$.

WE WILL PROVE:

Lemma. 3.1. $\forall \epsilon > 0, t \ge 3, n \ge n_1(\epsilon, t)$ each graph *G* of order *n* and with $d(G) \ge c(t) = \epsilon$ has a K_t -minor of order at most $O(\frac{c(t)t^2}{\epsilon}log(n)(loglog(n))^3)$.

Definition. δ -expander Graph H, |V(H)| = m is a δ -expander if $\forall d : 0 \leq d \leq loglog(m) - 1$, $\forall S : S \subseteq V(H), |S| \leq \frac{m}{2^{2^d}} \Longrightarrow$

$$|N(S)| \ge \frac{\delta 2^d}{\log(m) \log\log(m)^2} |S|.$$

Lemma. KEY LEMMA 1.2. Graph G, d(G) = c, then $\forall \delta$: $0 < \delta < \frac{1}{256} \exists H$ subgraph of G such that: $d(H) \ge (1 - \delta)c$ and H is a δ -expander.

Claim. 2.1. Graph G on n vertices, d(G) = c, subset $S \subset V(G)$ such that $|N(S)| < \gamma |S| \implies$ one of the following is fulfilled:

- 1. $d(G[V \setminus S])| \ge c$
- 2. $d(G[S \cup N(S)])| \ge (1 \gamma)c.$

Proof. (KEY LEMMA)

- sequence of graphs: $G = G_0, \ldots$
- end when $|G_t| \leq 256$ or G_t is a γ -expander
- use claim 2.1. and define G_{t+1} :
- case1 $G_{t+1} = G[V(G_t) \setminus S_t]$
- case2 $G_{t+1} = G[S_t \cup N(S_t)]$
- find the maximal edge loss when t passing through intervals $[2^{2^{k-1}}, 2^{2^k}]$

L.		

Lemma. 3.2. $\forall \delta > 0, t, m \ge m_0(\delta, t)$ each graph H is a δ -expander of order m then H has a K_t -minor of order at most $O(\frac{t^2}{\delta}log(n)(loglog(n))^3)$. **Definition.** Ball with radius k and center v is a set $B_k(v)$ of all vertices whose distance from v is $\leq k$.

Claim. 3.3. Let U, V be subsets of V(G) fulfilling: $\forall d: 0 \leq d \leq loglog(m) - 1$, whenever $|B_k(U)| \leq \frac{m}{22^d}$ then

$$|N(B_{k+1}(U))| \ge \frac{\delta 2^d}{10\log(m)(\log\log(m))^2} |B_k(U)|,$$

and the same holds for the set V.

Then there exists a path from U to V of length at most $\frac{20}{\delta} log(m)(loglog(m))^3$.

Proof. (claim 3.3)

• sufficient: $|B_k(U)| > \frac{m}{2}$ for some $k \ge \frac{20}{\delta} log(m) (loglog(m))^3$

Definition. δ -expanding ball Ball $B_k(v)$ is δ -expanding if $\forall i : 1 \le i \le k-1$: $|B_{i+1}(v)| \ge |B_i(v)|(1+\gamma)$.

Claim. 3.5. $\forall \delta > 0, t, m \ge m_0(\delta, t)$ each δ -expander G of order m fulfills one of the following:

- 1. G has t vertices of order > t
- 2. *G* contains *t* disjoint sets $S_1, \ldots S_t$ such that $G[S_i]$ is γ -expanding, and $m^{\frac{1}{5}} \leq |S_i| \leq m^{\frac{1}{4}} \, \forall i$ and $\forall v \in G[S_i] \deg(v) \leq \log^4(m)$, where $\gamma = \frac{\delta}{5(\log\log(m))^2}$.

Proof. (claim 3.5.)

- if not ad 1. then $T = \{v, deg(v) > log^4(m)\} < t$
- "nice" set S: G[S] is a $\gamma\text{-expanding ball and }\frac{1}{5} < |S| < \frac{1}{4}$
- each $W \supseteq T$, $|W| \le m^{\frac{1}{3}}$ contains a "nice" subset one can iteratively pick S_i from $G \setminus W_i$, where $W_i = (\bigcup_{j \le i} S_j) \cup$
- proof goes on by contradiction: suppose there is some W of the given properties, that does not contain a "nice" subset
- set $G_0 = G \setminus W$, take k_i the smallest that violates the expander condition for some fixed v_1
- set $T_1 = B_{k_1}(v_1)$, then $G_1 = G_0 \setminus T_1, \ldots$ until the first time $\bigcup_i T_i > \frac{\sqrt{(m)}}{2}$
- yield a contradiction

Claim. 3.6. $\forall \delta > 0, t, m \ge m_0(\delta, t)$ and G a δ -expander of order m, which has t vertices fulfilling ad 1. from Claim 3.5.

 \implies G has a K_t -minor of order at most $O(\frac{t^2}{\delta}log(n)(loglog(n))^3)$.

Claim. 3.6. $\forall \delta > 0, t, m \ge m_0(\delta, t)$ and G a δ -expander of order m, which has t subsets fulfilling ad 2. from Claim 3.5. $\implies G$ has a K_t -minor of order at most $O(\frac{t^2}{\delta}log(n)(loglog(n))^3)$.

г		_	
L			
L			
-	_	_	