Small Complete Minors Above the Extremal Edge Density by Asaf Shapira and Benny Sudakov

March 25, 2013

Definition. G graph, subgraph H of G is a minor of G if it can be obtained from G by a sequence of edge and vertex deletions and contractions.
K_{t}-minor of a graph G : connected subgraphs $S_{1}, \ldots S_{t}$ of G, such that there exist internally disjoint paths $P_{i, j}$ joining each S_{i}, S_{j}.

Definition. $c(t)=\min \left\{c: d(t) \geq c \Longrightarrow\right.$ Ghas a K_{t} minor $\}$
THE RESULT:
Theorem. 1. For all $\epsilon>0$, integer $t, \exists n_{0}(\epsilon, t)$ such that each graph G fulfilling $|V(G)| \geq n_{0}$ and $d(G) \geq c(t)+\epsilon$ has a K_{t}-minor of order at most $O\left(\frac{c(t) t^{2}}{\epsilon} \log (n) \log \log (n)\right)$.

WE WILL PROVE:

Lemma. 3.1. $\forall \epsilon>0, t \geq 3, n \geq n_{1}(\epsilon, t)$
each graph G of order n and with $d(G) \geq c(t)=\epsilon$ has a K_{t}-minor of order at most $O\left(\frac{c(t) t^{2}}{\epsilon} \log (n)(\log \log (n))^{3}\right)$.

Definition. δ-expander Graph $H,|V(H)|=m$ is a δ-expander if $\forall d: 0 \leq d \leq \log \log (m)-1$, $\forall S: S \subseteq V(H),|S| \leq \frac{m}{2^{2^{d}}} \Longrightarrow$

$$
|N(S)| \geq \frac{\delta 2^{d}}{\log (m) \log \log (m)^{2}}|S|
$$

Lemma. KEY LEMMA 1.2. Graph $G, d(G)=c$, then $\forall \delta: 0<\delta<\frac{1}{256} \exists H$ subgraph of G such that: $d(H) \geq(1-\delta) c$ and H is a δ-expander.

Claim. 2.1. Graph G on n vertices, $d(G)=c$, subset $S \subset V(G)$ such that $|N(S)|<\gamma|S| \Longrightarrow$ one of the following is fulfilled:

1. $d(G[V \backslash S]) \mid \geq c$
2. $d(G[S \cup N(S)]) \mid \geq(1-\gamma) c$.

Proof. (KEY LEMMA)

- sequence of graphs: $G=G_{0}, \ldots$
- end when $\left|G_{t}\right| \leq 256$ or G_{t} is a γ-expander
- use claim 2.1. and define G_{t+1} :
- case1 $G_{t+1}=G\left[V\left(G_{t}\right) \backslash S_{t}\right]$
- case2 $G_{t+1}=G\left[S_{t} \cup N\left(S_{t}\right)\right]$
- find the maximal edge loss when t passing through intervals $\left[2^{2^{k-1}}, 2^{2^{k}}\right]$

Lemma. 3.2. $\forall \delta>0, t, m \geq m_{0}(\delta, t)$
each graph H is a δ-expander of order m then H has a K_{t}-minor of order at most $O\left(\frac{t^{2}}{\delta} \log (n)(\log \log (n))^{3}\right)$.

Definition. Ball with radius k and center v is a set $B_{k}(v)$ of all vertices whose distance from v is $\leq k$.

Claim. 3.3. Let U, V be subsets of $V(G)$ fulfilling:
$\forall d: 0 \leq d \leq \log \log (m)-1$, whenever $\left|B_{k}(U)\right| \leq \frac{m}{2^{2^{d}}}$ then

$$
\left|N\left(B_{k+1}(U)\right)\right| \geq \frac{\delta 2^{d}}{10 \log (m)(\log \log (m))^{2}}\left|B_{k}(U)\right|
$$

and the same holds for the set V.
Then there exists a path from U to V of length at most $\frac{20}{\delta} \log (m)(\log \log (m))^{3}$.

Proof. (claim 3.3)

- sufficient: $\left|B_{k}(U)\right|>\frac{m}{2}$ for some $k \geq \frac{20}{\delta} \log (m)(\log \log (m))^{3}$

Definition. δ-expanding ball Ball $B_{k}(v)$ is δ-expanding if $\forall i: 1 \leq i \leq k-1:\left|B_{i+1}(v)\right| \geq\left|B_{i}(v)\right|(1+\gamma)$.

Claim. 3.5. $\forall \delta>0, t, m \geq m_{0}(\delta, t)$ each δ-expander G of order m fulfills one of the following:

1. G has t vertices of order $>t$
2. G contains t disjoint sets $S_{1}, \ldots S_{t}$ such that $G\left[S_{i}\right]$ is γ-expanding, and $m^{\frac{1}{5}} \leq\left|S_{i}\right| \leq m^{\frac{1}{4}} \forall i$ and $\forall v \in G\left[S_{i}\right]$ $\operatorname{deg}(v) \leq \log ^{4}(m)$, where $\gamma=\frac{\delta}{5(\log \log (m))^{2}}$.

Proof. (claim 3.5.)

- if not ad 1. then $T=\left\{v, \operatorname{deg}(v)>\log ^{4}(m)\right\}<t$
- "nice" set $S: G[S]$ is a γ-expanding ball and $\frac{1}{5}<|S|<\frac{1}{4}$
- each $W \supseteq T,|W| \leq m^{\frac{1}{3}}$ contains a "nice" subset - one can iteratively pick S_{i} from $G \backslash W_{i}$, where $W_{i}=\left(\bigcup_{j<i} S_{j}\right) \cup$
- proof goes on by contradiction: suppose there is some W of the given properties, that does not contain a "nice" subset
- set $G_{0}=G \backslash W$, take k_{i} the smallest that violates the expander condition for some fixed v_{1}
- set $T_{1}=B_{k_{1}}\left(v_{1}\right)$, then $G_{1}=G_{0} \backslash T_{1}, \ldots$ until the first time $\bigcup_{i} T_{i}>\frac{\sqrt{(} m)}{2}$
- yield a contradiction

Claim. 3.6. $\forall \delta>0, t, m \geq m_{0}(\delta, t)$ and G a δ-expander of order m, which has t vertices fulfilling ad 1 . from Claim 3.5.
$\Longrightarrow G$ has a K_{t}-minor of order at most $O\left(\frac{t^{2}}{\delta} \log (n)(\log \log (n))^{3}\right)$.

Claim. 3.6. $\forall \delta>0, t, m \geq m_{0}(\delta, t)$ and G a δ-expander of order m, which has t subsets fulfilling ad 2 . from Claim 3.5.
$\Longrightarrow G$ has a K_{t}-minor of order at most $O\left(\frac{t^{2}}{\delta} \log (n)(\log \log (n))^{3}\right)$.

