On the Caccetta-Häggkvist Conjecture with Forbidden Subgraphs

Alexander A. Razborov

Conjecture 1 (Caccetta-Häggkvist Conjecture) Any \vec{C}_{3}-free orgraph Γ on n vertices contains a vertex v with $d_{\Gamma}^{+}(v) \leq \frac{n-1}{3}$.

1. Extremal configurations

Define the (infinite) orgraph Γ_{0} with $V\left(\Gamma_{0}\right) \stackrel{\text { def }}{=} S^{1}$ (unit circle) and $E\left(\Gamma_{0}\right) \stackrel{\text { def }}{=}\{\langle x, y\rangle \mid y-x<1 / 3 \bmod 1\}$. Let $\Omega \stackrel{\text { def }}{=}\left(S^{1}\right)^{\infty}$ be the infinite-dimensional torus. Define the orgraph Γ_{CH} with $V\left(\Gamma_{\mathrm{CH}}\right)=\Omega$ and for any two different vertices $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right), \mathrm{y}=\left(y_{1}, \ldots, y_{n} \ldots\right) \in \Omega$ we choose the minimal d for which $x_{d} \neq y_{d}$ and let $\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{E}\left(\Gamma_{\mathrm{CH}}\right)$ if and only if $\left\langle x_{d}, y_{d}\right\rangle \in E\left(\Gamma_{0}\right)$.

Fix a probability measure μ on Borel subsets of Ω. Every finite string $\left(a^{1}, \ldots, a^{d}\right) \in\left(S^{1}\right)^{d}$ defines the canonical closed set $\Omega_{a}=\left\{\mathrm{x} \in \Omega \mid x_{1}=a_{1}, \ldots, x_{d}=a_{d}\right\}$. Whenever $\mu\left(\Omega_{a}\right)>0$, we have the conditional measure μ_{a} on $\Omega_{a}\left(\mu_{a}(X) \stackrel{\text { def }}{=} \frac{\mu(X)}{\mu\left(\Omega_{a}\right)}, X \subseteq \Omega_{a}\right)$ and then the pushforward measure $\widehat{\mu}_{a}$ on S^{1} defined by projecting Ω_{a} onto the $(d+1)$ st coordinate. Let us call the measure μ extremal if for every prefix a for which $\mu\left(\Omega_{a}\right)>0$, this measure $\widehat{\mu}_{a}$ has one of the following two forms:

- uniform (Lebesgue) measure on S^{1};
- uniform discrete measure on the set $\left\{\frac{0}{3 h+1}, \frac{1}{3 h+1}, \ldots, \frac{3 h}{3 h+1}\right\}$ for some integer $h \geq 1$.

Claim 1.1 For any extremal measure μ on Ω with the above property and for any $x \in \Omega$,

$$
\mu\left(\left\{\mathrm{y} \in \Omega \mid\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{E}\left(\Gamma_{C H}\right)\right\}\right)=1 / 3
$$

2. Main theorem

Theorem 2.1 Let Γ be an orgraph on n vertices that does not contain either \vec{C}_{3} or any of the three orgraphs on Figure 1 as an induced subgraph. Then Γ contains a vertex v with $d_{\Gamma}^{+}(v) \leq \frac{n-1}{3}$.

Definition 2.2 (Types and flags) 0 and 1 are the unique type of sizes 0 and 1 , respectively.
A is the type of size 2 with $E(A) \stackrel{\text { def }}{=}\{\langle 1,2\rangle\}$, and N is the type of size 2 without any edges. P is the type of size 3 with $E(P) \stackrel{\text { def }}{=}\{\langle 1,2\rangle,\langle 2,3\rangle\}$.
$\alpha \in \mathcal{F}_{2}^{1}$ is a directed edge in which the tail vertex is labeled by 1.
Our final goal is to find a vertex v with $\alpha(v) \leq 1 / 3$.
For a type σ of size k, let $O^{\sigma} \in \mathcal{F}_{k+1}^{\sigma}$ be the flag in which the only free vertex has k incoming edges.
Let us call an edge $\langle v, w\rangle$ critical if $O^{A}(v, w)$ takes the minimal possible value over all edges going out of v.

Claim 2.3 For any critical edge $\langle v, w\rangle, \widehat{O}^{A}(v, w)=0$.
In what follows, we argue by contradiction, i.e. we assume that $\alpha(v)>\frac{1}{3}$ for all $v \in V(\Gamma)$.

Figure 1: Forbidden orgraphs.

Figure 2: Some orgraphs on 3 vertices.

Claim 2.4 For any critical edge $\langle v, w\rangle, \vec{P}_{3}^{A}(v, w)>0$.
Claim 2.5 If $\langle u, v\rangle$ and $\langle v, w\rangle$ are critical edges then u and w are independent.
Claim 2.6 If $\langle u, v\rangle$ and $\langle v, w\rangle$ are critical edges then $\vec{K}_{2,1}^{N}(u, w)=0$.
Claim 2.7 If $\langle u, v\rangle$ and $\langle v, w\rangle$ are critical edges then

$$
\begin{equation*}
3 O^{A}(u, v) \leq \vec{P}_{3}^{N}(u, w)-\frac{1}{n-2} . \tag{1}
\end{equation*}
$$

Claim 2.8 If $\langle u, v\rangle$ and $\langle v, w\rangle$ are critical edges, then

$$
\begin{align*}
& \alpha(u)+\alpha(v)+\alpha(w)+\left(O^{A}(u, v)+I^{A}(u, v)+\vec{K}_{2,1}^{A}(u, v)\right) \tag{2}\\
& \quad-\left(O^{A}(v, w)+I^{A}(v, w)+\vec{K}_{2,1}^{A}(v, w)\right) \leq 1
\end{align*}
$$

Let us pick $\boldsymbol{x} \in V(\Gamma) \backslash\{u, v, w\}$ uniformly at random and let us re-calculate all quantities in the left-hand side with respect to that distribution. Denoting these re-calculated quantities with $\widetilde{\alpha}(u), \ldots, \widetilde{\vec{P}_{3}^{N}}(u, w)$, we claim that

$$
\begin{align*}
\widetilde{\alpha}(u) & +\widetilde{\alpha}(v)+\widetilde{\alpha}(w)+\left(\widetilde{I^{A}}(u, v)+\widetilde{\mathbb{K}_{2,1}^{A}}(u, v)-2 \widetilde{O^{A}}(u, v)\right) \\
& -\left(\widetilde{O^{A}}(v, w)+\widetilde{I^{A}}(v, w)+\widetilde{\vec{K}_{2,1}^{A}}(v, w)\right)+\widetilde{\vec{P}_{3}^{N}}(u, w) \leq 1 . \tag{3}
\end{align*}
$$

For that we prove that every individual $x \notin\{u, v, w\}$ contributes at most 1 to the left-hand side.

