On the Caccetta-Häggkvist Conjecture with Forbidden Subgraphs

Alexander A. Razborov

Conjecture 1 (Caccetta-Häggkvist Conjecture) Any \vec{C}_3 -free orgraph Γ on n vertices contains a vertex v with $d_{\Gamma}^+(v) \leq \frac{n-1}{3}$.

1. Extremal configurations

Define the (infinite) orgraph Γ_0 with $V(\Gamma_0) \stackrel{\text{def}}{=} S^1$ (unit circle) and $E(\Gamma_0) \stackrel{\text{def}}{=} \{ \langle x, y \rangle \mid y - x < 1/3 \mod 1 \}$. Let $\Omega \stackrel{\text{def}}{=} (S^1)^{\infty}$ be the infinite-dimensional torus. Define the orgraph Γ_{CH} with $V(\Gamma_{\text{CH}}) = \Omega$ and for any two different vertices $\mathsf{x} = (x_1, x_2, \ldots, x_n, \ldots)$, $\mathsf{y} = (y_1, \ldots, y_n, \ldots) \in \Omega$ we choose the minimal d for which $x_d \neq y_d$ and let $\langle \mathsf{x}, \mathsf{y} \rangle \in \mathsf{E}(\Gamma_{\text{CH}})$ if and only if $\langle x_d, y_d \rangle \in E(\Gamma_0)$.

Fix a probability measure μ on Borel subsets of Ω . Every finite string $(a^1, \ldots, a^d) \in (S^1)^d$ defines the canonical closed set $\Omega_a = \{ \mathbf{x} \in \Omega \mid x_1 = a_1, \ldots, x_d = a_d \}$. Whenever $\mu(\Omega_a) > 0$, we have the conditional measure μ_a on Ω_a ($\mu_a(X) \stackrel{\text{def}}{=} \frac{\mu(X)}{\mu(\Omega_a)}$, $X \subseteq \Omega_a$) and then the pushforward measure $\hat{\mu}_a$ on S^1 defined by projecting Ω_a onto the (d+1)st coordinate. Let us call the measure μ extremal if for every prefix a for which $\mu(\Omega_a) > 0$, this measure $\hat{\mu}_a$ has one of the following two forms:

- uniform (Lebesgue) measure on S^1 ;
- uniform discrete measure on the set $\left\{\frac{0}{3h+1}, \frac{1}{3h+1}, \dots, \frac{3h}{3h+1}\right\}$ for some integer $h \ge 1$.

Claim 1.1 For any extremal measure μ on Ω with the above property and for any $x \in \Omega$,

$$\mu(\{\mathbf{y} \in \Omega \mid \langle \mathbf{x}, \mathbf{y} \rangle \in \mathsf{E}(\Gamma_{CH})\}) = 1/3.$$

2. Main theorem

Theorem 2.1 Let Γ be an orgraph on n vertices that does not contain either \vec{C}_3 or any of the three orgraphs on Figure 1 as an induced subgraph. Then Γ contains a vertex v with $d_{\Gamma}^+(v) \leq \frac{n-1}{3}$.

Definition 2.2 (Types and flags) 0 and 1 are the unique type of sizes 0 and 1, respectively.

A is the type of size 2 with $E(A) \stackrel{\text{def}}{=} \{ \langle 1, 2 \rangle \}$, and N is the type of size 2 without any edges. P is the type of size 3 with $E(P) \stackrel{\text{def}}{=} \{ \langle 1, 2 \rangle, \langle 2, 3 \rangle \}$.

 $\alpha \in \mathcal{F}_2^1$ is a directed edge in which the tail vertex is labeled by 1.

Our final goal is to find a vertex v with $\alpha(v) \leq 1/3$.

For a type σ of size k, let $O^{\sigma} \in \mathcal{F}_{k+1}^{\sigma}$ be the flag in which the only free vertex has k incoming edges.

Let us call an edge $\langle v, w \rangle$ critical if $O^A(v, w)$ takes the minimal possible value over all edges going out of v.

Claim 2.3 For any critical edge $\langle v, w \rangle$, $\widehat{O}^A(v, w) = 0$.

In what follows, we argue by contradiction, i.e. we assume that $\alpha(v) > \frac{1}{3}$ for all $v \in V(\Gamma)$.

Figure 2: Some orgraphs on 3 vertices.

- ${\bf Claim \ 2.4} \ \ {\it For \ any \ critical \ edge} \ \langle v,w\rangle, \ \vec{P}^A_3(v,w)>0.$
- **Claim 2.5** If $\langle u, v \rangle$ and $\langle v, w \rangle$ are critical edges then u and w are independent.
- ${\bf Claim \ 2.6} \ \ {\it If} \ \langle u,v\rangle \ and \ \langle v,w\rangle \ are \ critical \ edges \ then \ \vec{K}^N_{2,1}(u,w)=0.$

Claim 2.7 If $\langle u, v \rangle$ and $\langle v, w \rangle$ are critical edges then

$$3O^{A}(u,v) \le \vec{P}_{3}^{N}(u,w) - \frac{1}{n-2}.$$
(1)

Claim 2.8 If $\langle u, v \rangle$ and $\langle v, w \rangle$ are critical edges, then

$$\left. \begin{array}{l} \alpha(u) + \alpha(v) + \alpha(w) + (O^{A}(u,v) + I^{A}(u,v) + \vec{K}_{2,1}^{A}(u,v)) \\ -(O^{A}(v,w) + I^{A}(v,w) + \vec{K}_{2,1}^{A}(v,w)) \leq 1. \end{array} \right\}$$
(2)

Let us pick $\boldsymbol{x} \in V(\Gamma) \setminus \{u, v, w\}$ uniformly at random and let us re-calculate all quantities in the left-hand side with respect to that distribution. Denoting these re-calculated quantities with $\widetilde{\alpha}(u), \ldots, \widetilde{\vec{P}_3^N}(u, w)$, we claim that

$$\left. \begin{array}{l} \widetilde{\alpha}(u) + \widetilde{\alpha}(v) + \widetilde{\alpha}(w) + (\widetilde{I^{A}}(u,v) + \widetilde{\vec{K}^{A}_{2,1}}(u,v) - 2\widetilde{O^{A}}(u,v)) \\ - (\widetilde{O^{A}}(v,w) + \widetilde{I^{A}}(v,w) + \widetilde{\vec{K}^{A}_{2,1}}(v,w)) + \widetilde{\vec{P}^{N}_{3}}(u,w) \leq 1. \end{array} \right\}$$
(3)

For that we prove that every *individual* $x \notin \{u, v, w\}$ contributes at most 1 to the left-hand side.