ON SUNFLOWERS AND MATRIX MULTIPLICATION

N. ALON, A. SHPILKA, C. UMANS

Presented by: Marek Eliáš
Definition (k-sunflower). Subsets A_{1}, \ldots, A_{k} of a universe U form a k-sunflower if $\forall i \neq j A_{i} \cap$ $A_{j}=\cap_{i=1}^{k} A_{i}$.
Conjecture 1 (Classical sunflower conjecture). For every $k>0$ there is a constant c_{k} such that the following holds. Let \mathcal{F} be an arbitrary family of sets of size s from some universe U. If $|\mathcal{F}| \geq c_{k}^{s}$ then \mathcal{F} contains a k-sunflower.

Conjecture 2 (Sunflower conjecture in $\{0,1\}^{n}$). There is $\epsilon>0$ such that any family \mathcal{F} of subsets of $[n]$ of size $|\mathcal{F}| \geq 2^{(1-\epsilon) n}$ contains a 3-sunflower.

Definition (Sunflowers in \mathbb{Z}_{D}^{n}). We say that k vectors $v_{1}, \ldots, v_{k} \in \mathbb{Z}_{D}^{n}$ form a k-sunflower if for every coordinate $i \in[n]$ it holds that either $\left(v_{1}\right)_{i}=\cdots=\left(v_{k}\right)_{i}$ or they all differ on that coordinate.
Conjecture 3 (Sunflower conjecture in \mathbb{Z}_{D}^{n}). For every k there is an absolute constant b_{k} so that for every D and every n, any set of at least b_{k}^{n} vectors in \mathbb{Z}_{D}^{n} contains a k-sunflower.

Conjecture 4 (Weak sunflower conjecture in \mathbb{Z}_{D}^{n}). There is an $\epsilon>0$ so that for $D>D_{0}$ and $n>n_{0}$, any set of at least $D^{(1-\epsilon) n}$ vectors in \mathbb{Z}_{D}^{n} contains a 3 -sunflower.

Conjecture 5 (Weak sunflower conjecture in \mathbb{Z}_{3}^{n}). There is an $\epsilon>0$ so that for $n>n_{0}$, any set of at least $3^{(1-\epsilon) n}$ vectors in \mathbb{Z}_{3}^{n} contains a 3 -sunflower.
Definition (Multicolored sunflower). Triple (x, y, z) $\in \mathbb{Z}_{3}^{n} \times \mathbb{Z}_{3}^{n} \times \mathbb{Z}_{3}^{n}$ is an ordered sunflower in $\mathbb{Z}_{3}^{n} \times \mathbb{Z}_{3}^{n} \times \mathbb{Z}_{3}^{n}$ if $\{x, y, z\}$ is a sunflower in \mathbb{Z}_{3}^{n}. We say that ordered sunflowers $(a, b, c),(x, y, z)$ are disjoint, if $a \neq x, b \neq y$ and $c \neq z$. We say that a collection of ordered triples contains a multicolored sunflower if it contains three triples $\left(x^{(1)}, y^{(1)}, z^{(1)}\right),\left(x^{(2)}, y^{(2)}, z^{(2)}\right),\left(x^{(3)}, y^{(3)}, z^{(3)}\right)$ where $\left\{x^{(1)}, y^{(2)}, z^{(3)}\right\}$ is a sunflower.

Conjecture 6 (Multicolored sunflower conjecture in \mathbb{Z}_{3}^{n}). There is an $\epsilon>0$ so that for $n>n_{0}$, every collection $\mathcal{F} \subseteq \mathbb{Z}_{3}^{n} \times \mathbb{Z}_{3}^{n} \times \mathbb{Z}_{3}^{n}$ of at least $3^{(1-\epsilon) n}$ ordered sunflower contains a multicolored sunflower.
Definition (Uniquely solvable puzzle). A uniquely solvable puzzle (USP) of width n is a subset $\mathcal{F} \subseteq \mathbb{Z}_{3}^{n}$ satisfying the following property: For all permutations $\pi_{0,1,2} \in \operatorname{Sym}(\mathcal{F})$, either $\pi_{0}=\pi_{1}=$ π_{2} or else there is $u \in \mathcal{F}$ and $i \in[n]$ such that at least two of $\left(\pi_{0}(u)\right)_{i}=0,\left(\pi_{1}(u)\right)_{i}=1,\left(\pi_{2}(u)\right)_{i}=2$ hold.
The USP capacity is the largest constant C such that there exist USPs of size $(C-o(1))^{n}$ and width n for infinitely many values of n.

Cohn et al. and Coppersmith, Winograd: USP capacity equals $\frac{3}{2^{2 / 3}}$.
Definition (Strong USP). A strong USP of width n is a subset $\mathcal{F} \subseteq \mathbb{Z}_{3}^{n}$ satisfying the following property: For all permutations $\pi_{0,1,2} \in \operatorname{Sym}(\mathcal{F})$, either $\pi_{0}=\pi_{1}=\pi_{2}$ or else there is $u \in \mathcal{F}$ and $i \in[n]$ such that exactly two of $\left(\pi_{0}(u)\right)_{i}=0,\left(\pi_{1}(u)\right)_{i}=1,\left(\pi_{2}(u)\right)_{i}=2$ hold.
The strong USP capacity is the largest constant C such that there exist strong USPs of size $(C-o(1))^{n}$ and width n for infinitely many values of n.

Definition (Local strong USP). A local strong USP of width n is a subset $\mathcal{F} \subseteq \mathbb{Z}_{3}^{n}$ if for every $u, v, w \in \mathcal{F}$, not all equal, the sets $\left\{i \mid u_{i}=0\right\},\left\{i \mid v_{i}=1\right\},\left\{i \mid w_{i}=2\right\}$ do not form a 3 -sunflower. The local strong USP capacity is the largest constant C such that there exist local strong USPs of size $(C-o(1))^{n}$ and width n for infinitely many values of n.

Conjecture 7 (Strong USP capacity). The strong USP capacity (and the local strong USP capacity) equals $\frac{3}{2^{2 / 3}}$.
Definition. An Abelian group G (with at least two elements) and a subset S of G satisfy the no three disjoint equivoluminous subsets property if: whenever T_{1}, T_{2}, T_{3} are three disjoint subsets of S, not all empty, they cannot all have the same sum in G :

$$
\sum_{g \in T_{1}} g \neq \sum_{g \in T_{2}} g \text { or } \sum_{g \in T_{2}} g \neq \sum_{g \in T_{3}} g
$$

Coppersmith and Winograd: If there is a sequence of pairs G, S with the no three disjoint equivoluminous subsets property, such that $\log (|G|) /|S|$ approaches 0 , then for every $\epsilon>0$ there is an $O\left(n^{2+\epsilon}\right)$ time fast matrix multiplication algorithm.

Theorem (\#3.2). If Conjecture 2 holds with ϵ_{0} then if G, S have no three disjoint equivoluminous subsets property then $|S| \leq \log (|G|) / \epsilon_{0}$.

