Making polynomials robust to noise

A. A. Sherstov

Goal. We aim to approximate Boolean functions by real polynomials in a robust way. By D we denote the discrete set $\{-1,+1\}$, by I the interval $[-1,+1]$. Let f be a Boolean function $D^{n} \rightarrow D$, p a polynomial $I^{n} \rightarrow \mathbf{R}$ and $\varepsilon \in \mathbf{R}$ a constant, we say that

- p is an ε-approximation of f if $|f(x)-p(x)| \leq \varepsilon$ for every $x \in D^{n}$,
- p is a robust ε-approximation of f if $|f(x)-p(x+\delta)| \leq \varepsilon$ for every $x \in D^{n}$ and every $\delta \in(I / 3)^{n}$.

The main result can be stated compactly as follows:
Theorem 1. Let $p: D^{n} \rightarrow I$ be a polynomial. Then for every $\varepsilon>0$ there is a polynomial p^{\prime} of degree $O\left(\operatorname{deg} p+\log \frac{1}{\varepsilon}\right)$ that robustly ε-approximates p.

Tools. For functions from a set X to \mathbf{R} we use the notation $\|\phi\|_{\infty}=\sup _{x \in X}|\phi(x)|$ and $\|\phi\|_{1}=$ $\sum_{x \in X}|\phi(x)|$. We use the characteristic sign functions, that is, for $S \subseteq\{1 . . n\}$ we have $\chi_{S}: D^{n} \rightarrow D$ defined as

$$
\chi_{S}(x)=\prod_{i \in S} x_{i}
$$

These functions form an orthogonal basis for the vector space of the functions $D^{n} \rightarrow \mathbf{R}$ (with the scalar product $\left.\langle f, g\rangle=2^{-n} \sum_{x \in D^{n}} f(x) g(x)\right)$. Thus every function can be represented as a linear combination of its Fourier characters, that is,

$$
\phi=\sum_{S \subseteq\{1 . . n\}} \hat{\phi}(S) \chi_{S},
$$

where $\hat{\phi}(S)=\left\langle\phi, \chi_{S}\right\rangle$. This provides a multilinear extension to $\mathbf{R}^{n} \rightarrow \mathbf{R}$.

Battle plan. We gradually construct robust approximations for the following classes of polynomials:

1. Parity polynomials, $p(x)=\prod_{i \in\{1 . . n\}} x_{i}$.
2. Homogeneous polynomials, $p(x)=\sum_{|S|=d} a_{S} \prod_{i \in S} x_{i}$.
3. General polynomials.

Take a deep breath, the next page is tough.

Parity polynomials, $p(x)=\prod_{i \in\{1 . . n\}} x_{i}$.
Lemma 1. For $x_{1 . . n} \in(-\sqrt{2}, 0) \cup(0, \sqrt{2})$,

$$
\operatorname{sgn}\left(x_{1} \cdot x_{2} \cdots x_{n}\right)=x_{1} \cdot x_{2} \cdots x_{n} \sum_{i_{1}, i_{2}, \ldots, i_{n} \in \mathbf{N}} \prod_{j=1}^{n}\left(-\frac{1}{4}\right)^{i_{j}}\binom{2 i_{j}}{i_{j}}\left(x_{j}^{2}-1\right)^{i_{j}} .
$$

Theorem 2. Fix $\varepsilon \in[0,1)$ and let $X=[-\sqrt{1+\varepsilon},-\sqrt{1-\varepsilon}] \cup[\sqrt{1-\varepsilon}, \sqrt{1+\varepsilon}]$. Then for every natural number N there is an explicitly given polynomial $p: \mathbf{R}^{n} \rightarrow \mathbf{R}$ of degree at most $2 N+n$ such that

$$
\max _{X^{n}}\left|\operatorname{sgn} x_{1} \cdot x_{2} \cdots x_{n}-p(x)\right| \leq \varepsilon^{N+1}(1+\varepsilon)^{n / 2}\binom{N+n}{N+1} N .
$$

Reduction from general case to homogeneous polynomials.

Lemma 2. Let $p(t)=\sum_{i=0}^{d} a_{i} t^{i}$ be a given polynomial. Then for every $i=0,1, \ldots, d$ we have

$$
\left|a_{i}\right| \leq(4 e)^{d} \max _{j=0,1, \ldots, d}\left|p\left(\frac{j}{d}\right)\right| .
$$

Theorem 3. Let $\phi: D^{n} \rightarrow \mathbf{R}$ be a function, $\operatorname{deg} \phi=d$. Write $\phi=\phi_{0}+\phi_{1}+\cdots+\phi_{d}$, where $\phi_{i}: D^{n} \rightarrow \mathbf{R}$ is given by $\phi_{i}=\sum_{|S|=i} \hat{\phi}(S) \chi_{S}$. Then for $i=0,1, \ldots, d$ we have

$$
\left\|\phi_{i}\right\|_{\infty} \leq(4 e)^{d}\|\phi\|_{\infty}
$$

Homogeneous polynomials, $p(x)=\sum_{|S|=d} a_{S} \prod_{i \in S} x_{i}$.
Abrahadabra. Let v be a vector in $\{0,1\}^{d}$, the operator A_{v} acting on functions from D^{n} to \mathbf{R} is defined by

$$
\left(A_{v} f\right)(x)=\mathbf{E}_{z \in D^{d}}\left\{z_{1} \cdot z_{2} \cdots z_{d} f\left(\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{1}^{v_{i}}, \frac{1}{d} \sum_{i=1}^{d} z_{i} x_{2}^{v_{i}}, \ldots, \frac{1}{d} \sum_{i=1}^{d} z_{i} x_{n}^{v_{i}}\right)\right\}
$$

Theorem 4. Let $\phi: D^{n} \rightarrow \mathbf{R}$ be given such that $\hat{\phi}(S)=0$ whenever $|S| \neq d$. Fix arbitrary symmetric function $\delta: D^{n} \rightarrow \mathbf{R}$ and define $\Delta: D^{n} \rightarrow \mathbf{R}$ by

$$
\Delta(x)=\sum_{|S|=d} \hat{\phi}(S) \delta(x \mid S) .
$$

Then

$$
\|\Delta\|_{\infty} \leq \frac{d^{d}}{d!}\|\phi\|_{\infty}\|\hat{\delta}\|_{1}
$$

Theorem 5. Let $\phi: D^{n} \rightarrow \mathbf{R}$ be given such that $\hat{\phi}(S)=0$ whenever $|S| \neq d$. Fix $\varepsilon \in[0,1)$ and let X be as in Lemma 1. Then for every natural number M there is an explicitly given polynomial $p: \mathbf{R}^{d} \rightarrow \mathbf{R}$ of degree at most $2 M+d$ such that

$$
P(x)=\sum_{S \in\binom{n}{d}} \hat{\phi}(S) p(x \mid S)
$$

obeys

$$
\max _{X^{n}}\left|\phi\left(\operatorname{sgn} x_{1}, \operatorname{sgn} x_{2}, \ldots, \operatorname{sgn} x_{n}\right)-P(x)\right| \leq(1+\varepsilon)^{d / 2} \frac{d^{d}}{d!} \varepsilon^{M}\binom{M+d}{M} M\|\phi\|_{\infty} .
$$

