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Goal. We aim to approximate Boolean functions by real polynomials in a robust way. By D we

denote the discrete set {−1,+1}, by I the interval [−1,+1]. Let f be a Boolean function Dn → D,
p a polynomial In → R and ε ∈ R a constant, we say that

• p is an ε-approximation of f if |f(x)− p(x)| ≤ ε for every x ∈ Dn,

• p is a robust ε-approximation of f if |f(x) − p(x + δ)| ≤ ε for every x ∈ Dn and every
δ ∈ (I/3)n.

The main result can be stated compactly as follows:

Theorem 1. Let p : Dn → I be a polynomial. Then for every ε > 0 there is a polynomial p′ of
degree O(deg p+ log 1

ε
) that robustly ε-approximates p.

Tools. For functions from a set X to R we use the notation ‖φ‖∞ = supx∈X |φ(x)| and ‖φ‖1 =∑
x∈X |φ(x)|. We use the characteristic sign functions, that is, for S ⊆ {1..n} we have χS : Dn → D

defined as
χS(x) =

∏
i∈S

xi.

These functions form an orthogonal basis for the vector space of the functions Dn → R (with the
scalar product 〈f, g〉 = 2−n

∑
x∈Dn f(x)g(x)). Thus every function can be represented as a linear

combination of its Fourier characters, that is,

φ =
∑

S⊆{1..n}

φ̂(S)χS,

where φ̂(S) = 〈φ, χS〉. This provides a multilinear extension to Rn → R.

Battle plan. We gradually construct robust approximations for the following classes of polyno-

mials:

1. Parity polynomials, p(x) =
∏

i∈{1..n} xi.

2. Homogeneous polynomials, p(x) =
∑
|S|=d aS

∏
i∈S xi.

3. General polynomials.
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Parity polynomials, p(x) =
∏

i∈{1..n} xi.

Lemma 1. For x1..n ∈ (−
√

2, 0) ∪ (0,
√

2),

sgn(x1 · x2 · · ·xn) = x1 · x2 · · ·xn
∑

i1,i2,...,in∈N

n∏
j=1

(
−1

4

)ij (2ij
ij

)
(x2j − 1)ij .

Theorem 2. Fix ε ∈ [0, 1) and let X = [−
√

1 + ε,−
√

1− ε] ∪ [
√

1− ε,
√

1 + ε]. Then for every
natural number N there is an explicitly given polynomial p : Rn → R of degree at most 2N +n such
that

max
Xn
|sgnx1 · x2 · · ·xn − p(x)| ≤ εN+1(1 + ε)n/2

(
N + n

N + 1

)
N.

Reduction from general case to homogeneous polynomials.

Lemma 2. Let p(t) =
∑d

i=0 ait
i be a given polynomial. Then for every i = 0, 1, . . . , d we have

|ai| ≤ (4e)d max
j=0,1,...,d

∣∣∣∣p( jd
)∣∣∣∣ .

Theorem 3. Let φ : Dn → R be a function, deg φ = d. Write φ = φ0 + φ1 + · · · + φd, where
φi : D

n → R is given by φi =
∑
|S|=i φ̂(S)χS. Then for i = 0, 1, . . . , d we have

‖φi‖∞ ≤ (4e)d‖φ‖∞.

Homogeneous polynomials, p(x) =
∑
|S|=d aS

∏
i∈S xi.

Abrahadabra. Let v be a vector in {0, 1}d, the operator Av acting on functions from Dn to R is
defined by

(Avf)(x) = Ez∈Dd

{
z1 · z2 · · · zdf

(
1

d

d∑
i=1

zix
vi
1 ,

1

d

d∑
i=1

zix
vi
2 , . . . ,

1

d

d∑
i=1

zix
vi
n

)}
.

Theorem 4. Let φ : Dn → R be given such that φ̂(S) = 0 whenever |S| 6= d. Fix arbitrary
symmetric function δ : Dn → R and define ∆: Dn → R by

∆(x) =
∑
|S|=d

φ̂(S)δ(x|S).

Then

‖∆‖∞ ≤
dd

d!
‖φ‖∞‖δ̂‖1.

Theorem 5. Let φ : Dn → R be given such that φ̂(S) = 0 whenever |S| 6= d. Fix ε ∈ [0, 1) and
let X be as in Lemma 1. Then for every natural number M there is an explicitly given polynomial
p : Rd → R of degree at most 2M + d such that

P (x) =
∑
S∈(n

d)

φ̂(S)p(x|S)

obeys

max
Xn
|φ(sgnx1, sgnx2, . . . , sgnxn)− P (x)| ≤ (1 + ε)d/2

dd

d!
εM
(
M + d

M

)
M‖φ‖∞.


