Long paths and cycles in random subgraphs of graphs with large minimum degree
 M. Krivelevich, C. Lee, B. Sudakov

1 Introduction

Fix a sequence of graphs G_{i}, where $i \in \mathbb{N}$. For the purpose of this talk, we always assume that the minimum degrees of the graphs tend to infinity, and the minimum degree of G_{i} will be denoted by k_{i}. Let $\left(G_{i}\right)_{p_{i}}$ be a random subgraph obtained from the graph G_{i} by taking each edge of G_{i} independently with probability p_{i}. We say that the $\left(G_{i}\right)_{p_{i}}$ satisfies some property \mathcal{P} asymptotically almost surely, if the probability that $\left(G_{i}\right)_{p_{i}}$ satisfies \mathcal{P} tends to one as i goes to infinity. For the simplicity, when G and p are graphs parametrized by the minimum degree, we abuse a notation and consider G and p as sequences obtained by taking the minimum degree tending to infinity. We then say that G_{p} satisfies \mathcal{P} a.a.s., if the underlying sequence does.

The main results of the paper shows that

- if $p=c / k$, then G_{p} a.a.s. contains a path of length $(1-2 / \sqrt{c}) \cdot k$,
- if $p=\omega(1) / k$, then G_{p} a.a.s. contains a cycle of length $(1-\varepsilon) \cdot k$, and
- if $p=(1+\varepsilon) \log k / k$, then G_{p} a.a.s. contains a path of length k.

Note that if the graphs G_{k} are cliques on $k+1$ vertices, we obtain the standard Erdős-Rényi model, and the results generalize various classical results about sparse random graphs. Specifically,

- the result of Ajtai, Komlós and Szemerédi about long paths in sparse random graphs, which was independently proven also by Fernandez de la Vega,
- the result of Bollobás, Fenner and Frieze about long cycles in sparse random graphs, and
- the result about Hamiltonicity threshold due to Bollobás, and Komlós and Szemerédi.

2 More formally

We present the following results about the case of paths.
Theorem 1.1. Let G be a finite graph with minimum degree at least k, and let $p=c / k$ for some positive c satisfying $c=o(k)$ (c is not necessarily fixed). Then a.a.s. G_{p} contains a path of length $(1-2 / \sqrt{c}) k$.

Theorem 1.2. Let ε be a fixed positive real. For a finite graph G of minimum degree at least k and a real $p \geq(1+\varepsilon) \log k / k, G_{p}$ a.a.s. contains a path of length k.

The key tools for proving Theorem 1.2 are the following two theorems:
Theorem 3.1. Let $p=c / k$ for some $c=o(k)$, and let G be a graph of minimum degree at least k.
(i) G_{p} a.a.s. contains a path of length $(1-2 / \sqrt{c}) k$,
(ii) if G is bipartite, then G_{p} a.a.s. contains a path of length $(2-6 / \sqrt{c}) k$, and
(iii) if c tends to infinity with k, then for a fixed vertex v, there a.a.s. exists a path of length $(1-2 / \sqrt{c}) k$ in G_{p} which starts at vertex v.

Theorem 3.2. There exists a positive real ε_{0} such that following holds for every fixed positive real $\varepsilon \leq \varepsilon_{0}$. Let G be a graph on n vertices of minimum degree at least $(1-\varepsilon) k$, and assume that $n \leq(1+\varepsilon) k$. For $p \geq \frac{(1+4 \varepsilon) \log k}{k}$, a random subgraph G_{p} is Hamiltonian a.a.s.

