The Littlewood-Offord problem in high dimensions and a conjecture of Frankl and Fúredi
 by Terence Tao and Van Vu
 presented by Vojta Tůma

1 Preliminaries

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a multiset of n vectors in \mathbb{R}^{d} with lengths at least 1 . The chief object of our investigation is the random sum $X_{V}=\sum_{i} \xi_{i} v_{i}$, where ξ_{i} take values 1 and -1 with probabilities $1 / 2$ independently of each other. The small ball probability is the quantity

$$
p_{d}(n, \Delta)=\sup _{V, B} P\left(X_{V} \in B\right)
$$

where B ranges over all balls of radius Δ and V over all multisets $\left\{v_{1}, \ldots, v_{n}\right\}$ with lengths at least 1.
In the asymptotic formulae in this paper, Δ and d will play the role of constants and n will be the variable.
Let $s=\lfloor\Delta\rfloor+1$ ("roundend Δ ") and $S(n, m)$ the sum of m largest binomial coefficients in n (e.g., for n odd is $S(n, 2)=\binom{n}{\lceil n / 2\rceil}+\binom{n}{\lfloor n / 2\rfloor}$).

2 Survey of results

Theorem 1 (Erdős's L-O inequality, 1945). $p_{1}(n, \Delta)=2^{-n} S(n, s)$.
Theorem 2 (Frankl-Fűredi L-O inequality, 1988). For any fixed d and Δ, $p_{d}(n, \Delta)=(1+o(1)) 2^{-n} S(n, s)$.

Theorem 3 (Frankl-Fűredi L-O conjecture, proven here). Let d, Δ be fixed. If $s-1 \leq \Delta<\sqrt{(s-1)^{2}+1}$ and n is sufficiently large (d, Δ), then

$$
p_{d}(n, \Delta)=2^{-n} S(n, s) .
$$

Remark: the assumption on s is necessary.

3 Tools and auxilliaries

Theorem 4 (Useful estimate, here). Let V be such that for any hyperplane H in \mathbb{R}^{d}, one has $\operatorname{dist}\left(v_{i}, H\right) \geq 1$ for at least k values of $i=1, \ldots, n$. Then for any unit ball B one has

$$
P\left(X_{V} \in B\right)=O_{d}\left(k^{-d / 2}\right) .
$$

Lemma 1 (Bound by Stirling). $2^{-n} S(n, s) \approx n^{-1 / 2}$.
Theorem 5 (Esséen's concentration inequality, 1966). Let X be a random variable taking a finite number of values in \mathbb{R}^{d}, let $R, \tau>0$. Then

$$
\sup _{x_{0} \in \mathbb{R}^{d}} P\left(\left|X-x_{0}\right| \leq R\right)=O\left(\frac{R}{\sqrt{d}}+\frac{\sqrt{d}}{\tau}\right)^{d} \int_{\xi \in \mathbb{R}^{d}:|\xi|<\tau}|E(e(\xi \cdot X))| d \xi
$$

Lemma 2. Let $w_{1}, \ldots, w_{d} \in \mathbb{R}$ be such that

$$
\operatorname{dist}\left(w_{j}, \operatorname{Span}\left\{w_{1}, \ldots, w_{j-1}\right\}\right) \geq 1
$$

for each j in $1, \ldots, d$. Then for any $\lambda>0$,

$$
\int_{\zeta \in \mathbb{R}^{d}:|\zeta|<1} \exp \left(-\lambda \sum_{j}\left\|\zeta \cdot w_{j}\right\|^{2}\right) d \zeta=O\left((1+\lambda)^{-d / 2}\right)
$$

