FROM IRREDUCIBLE REPRESENTATIONS TO LOCALLY DECODABLE CODES

KLIM EFREMENKO

Presented by: Marek Eliáš

Theorem (T1.1, informal). Let G be a finite group and let (ρ, V) be an irreducible representation of G with g_{1}, \ldots, g_{q} in G and $c_{1}, \ldots, c_{q} \in \mathbb{F}$ such that $\operatorname{rank}\left(\sum c_{i} \rho\left(g_{i}\right)\right)=1$. Then there exists a $(q, \delta, q \delta)$-locally decodable code $\mathcal{C}: V \rightarrow \mathbb{F}^{G}$.
Definition (Group action). A group G acts on a set X if there exists a mapping $T: G \times X \rightarrow X$ such that $T\left(g_{2}, T\left(g_{1}, x\right)\right)=T\left(g_{2} g_{1}, x\right)$ and $T(1, x)=x$.

Definition (Permutation action). Suppose G acts on the set X. A permutation action of G on Σ^{X} is defined by $(g f)(x)=f\left(g^{-1} x\right)$.
Definition (Representation of a Group). A representation (ρ, V) of a group G in a vector space V is a group homomorphism $\rho: G \rightarrow G L(V)$, where $G L(V)$ denotes the group of invertible matrices on the vector space V.

Definition. Let V be a vector space over the field \mathbb{F}. A representation of a group G in V is an action of the group G on the set V which satisfies the following conditions:

- $v_{1}, v_{2} \in V: g \cdot\left(v_{1}+v_{2}\right)=g \cdot v_{1}+g \cdot v_{2}$
- $\lambda \in \mathbb{F}: g \cdot(\lambda v)=\lambda g \cdot v$
- $v \in V: 1 \cdot v=v$

Definition (Sub-Representation). Let ρ be a representation of a group G in a vector space V. We say that $U \subset V$ is a sub-representation of ρ if U is a linear subspace of V and U is invariant under ρ, namely: for every $g \in G$ it holds that $\rho(g) U=U$.

Definition (Irreducible-Representation). Let ρ be a representation of a group G in a vector space V. We say that ρ is an irreducible representation if it does not have any non trivial subrepresentations.

Lemma (L2.3). Let (ρ, V) be an irreducible representation of G. Let $v \in V$ be a non-zero vector. Then the set $\{\rho(g) v \mid v \in G\}$ spans V, and thus there exist $g_{1}, \ldots, g_{k} \in G$ such that $\left\{\rho\left(g_{i}\right) v\right\}_{i=1}^{k}$ is a basis for V.
Definition (Homomorphisms between Representations). Let ρ_{1} be a representation of the group G in a vector space V and ρ_{2} be a representation of the group G in a vector space W. We say that a linear mapping $T: V \rightarrow W$ is a homomorphism from $\left(\rho_{1}, V\right)$ to $\left(\rho_{2}, W\right)$ iff $\forall g \in G: \rho_{2}(g) \circ T=$ $T \circ \rho_{1}(g)$.

Definition (Support). $\operatorname{supp}(f)=\{x \in X \mid f(x) \neq 0\}$
Lemma (L2.5). Let U be a vector subspace of \mathbb{F}^{X} of the full support and let $|\mathbb{F}| \geq t$. Then there exist a vector $u \in U$ such that $|\operatorname{supp}(u)| \geq\left(1-\frac{1}{t}\right)|X|$.
Definition (Group Algebra). The group algebra $\mathbb{F}[G]$ is the set of all functions from G to \mathbb{F}. Addition in this group algebra is given by $(f+g)(x)=f(x)+g(x)$ and multiplication is given by

$$
(f * h)(x)=\sum_{g_{1} \cdot g_{2}=x} f\left(g_{1}\right) h\left(g_{2}\right)
$$

We write $f \in \mathbb{F}[G]$ as a formal sum: $f=\sum_{i=1}^{n} f\left(g_{i}\right) g_{i}$ where the second appearance of g_{i} means an indicator function: $g_{i}(x)=1$ if $x=g_{i}$ and $g_{i}(x)=0$ else. We say that $f \in \mathbb{F}[G]$ is a q-sparse element if it has support of size at most q i.e., $f=\sum_{i=1}^{q} f\left(g_{i}\right) g_{i}$.

Let $\rho: G \rightarrow G L(V)$ be any representation of the group G. Then we can linearly extend ρ to the group algebra $\mathbb{F}[G]$ i.e., $\rho: \mathbb{F}[G] \rightarrow \operatorname{Mat}(V)(\operatorname{Mat}(V)$ means all matrices on $V)$ where $\rho(f)$ is defined as $\sum_{g \in G} f(g) \rho(g)$. Note that now $\rho(f)$ may be any matrix, not necessary invertible.

Definition (Dual Space). Let V be a linear vector space over field \mathbb{F}. Then the dual space of V, denoted V^{*} is the set of all linear functionals from V to \mathbb{F}.

Definition (Dual Basis). Let V be a vector space of dimension k. Let u_{1}, \ldots, u_{k} be a basis of V and v_{1}, \ldots, v_{k} be a basis of V^{*}. We say that these bases are dual if $v_{i}\left(u_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is Kronecker delta i.e., $\delta_{i j}=1$ if $i=j$ and zero otherwise.
Proposition (T2.9). The representation (ρ, V) is irreducible if and only if ($\bar{\rho}, V^{*}$) is irreducible.
Definition (Locally Decodable Codes). A code $\mathcal{C}: \mathbb{F}^{k} \rightarrow \mathbb{F}^{n}$ is said to be (q, δ, ε)-locally decodable if there exists a randomized decoding algorithm D^{w} with an oracle access to the received word w such that the following holds:
(1) For every message $m=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{F}^{k}$ and for every $w \in \mathbb{F}^{n}$ such that $\Delta(\mathcal{C}(m), w) \leq$ δn, for every i it holds that $\operatorname{Pr}\left(D^{w}(i)=m_{i}\right) \geq 1-\varepsilon$, where probability is taken over internal randomness of D. This means that the decoding algorithm can recover the relevant symbol even if up to δ fraction of the codeword symbols are corrupted.
(2) The algorithm $D^{w}(i)$ makes at most q queries to w.

Definition. A code $\mathcal{C}: \mathbb{F}^{k} \rightarrow \mathbb{F}^{n}$ is said to have a c-smooth decoder if $D^{\mathcal{C}(m)}(i)=m_{i}$ for every $m \in \mathbb{F}^{k}$ and for every i. Each query of $D(i)$ is uniformly distributed over a domain of size cn .
Proposition (Fact 2.10). Any code with a c-smooth decoder which makes q queries is also ($q, \delta, \frac{q \delta}{c}$) locally decodable.
Theorem (T3.1). Let G be a group acting on a set X. Let $\left(\tau, \mathbb{F}^{X}\right)$ be the permutational representation defined by this action. Let (ρ, V) be a representation of G. Let $\mathcal{C}: V \rightarrow \mathbb{F}^{X}$ be a G-homomorphism between representations (ρ, V) and $\left(\tau, \mathbb{F}^{X}\right)$. Assume that the following conditions hold:
(1) (a) There exists a q-sparse element $D \in \mathbb{F}[G], D=\sum_{i=1}^{q} c_{i} g_{i}$ sucg that $\operatorname{rank}(\rho(D))=1$. (b) (ρ, V) is an irreducible representation.
(2) Let $v \in \operatorname{Im}(\rho(D))$ be a non-zero vector. Then $\operatorname{supp}(\mathcal{C}(v)) \geq c|X|$. Let $k=\operatorname{dim} V$. Then there exists a basis b_{1}, \ldots, b_{k} for V such that

$$
\left(m_{1}, \ldots, m_{k}\right) \mapsto \mathcal{C}\left(\sum_{i=1}^{k}\left(m_{i} b_{i}\right)\right)
$$

is a $\left(q, \delta, \frac{q \delta}{c}\right)$-Locally Decodable Code.
Lemma (L3.2). There exists a basis $\left\{b_{1}, \ldots, b_{k}\right\}$ for V and $h_{1}, \ldots, h_{k} \in G$ such that $b_{i} \in \operatorname{ker}\left(\rho\left(D * h_{j}\right)\right)$ if and only if $i \neq j$.

Lemma (L3.3). Let V be a vector space over a field \mathbb{F}. Then for every irreducible representation (ρ, V) and for every $v \in V, v \neq 0$ there exist a homomorphism $\mathcal{C}: V \rightarrow \mathbb{F}[G]$ of representations (ρ, V) and the regular representation in $\mathbb{F}[G]$ such that $\operatorname{supp}(\mathcal{C}(v)) \geq|G|\left(1-\frac{1}{|\mathbb{F}|}\right)$.

