FROM IRREDUCIBLE REPRESENTATIONS TO LOCALLY DECODABLE CODES

KLIM EFREMENKO

Presented by: Marek Eliáš

Theorem (T1.1, informal). Let G be a finite group and let (ρ, V) be an irreducible representation of G with g_1, \ldots, g_q in G and $c_1, \ldots, c_q \in \mathbb{F}$ such that $\operatorname{rank}(\sum c_i \rho(g_i)) = 1$. Then there exists a $(q, \delta, q\delta)$ -locally decodable code $\mathcal{C} \colon V \to \mathbb{F}^G$.

Definition (Group action). A group G acts on a set X if there exists a mapping $T: G \times X \to X$ such that $T(g_2, T(g_1, x)) = T(g_2g_1, x)$ and T(1, x) = x.

Definition (Permutation action). Suppose G acts on the set X. A permutation action of G on Σ^X is defined by $(gf)(x) = f(g^{-1}x)$.

Definition (Representation of a Group). A representation (ρ, V) of a group G in a vector space V is a group homomorphism $\rho: G \to GL(V)$, where GL(V) denotes the group of invertible matrices on the vector space V.

Definition. Let V be a vector space over the field \mathbb{F} . A representation of a group G in V is an action of the group G on the set V which satisfies the following conditions:

- $v_1, v_2 \in V : g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2$
- $\lambda \in \mathbb{F} : g \cdot (\lambda v) = \lambda g \cdot v$
- $v \in V : 1 \cdot v = v$

Definition (Sub-Representation). Let ρ be a representation of a group G in a vector space V. We say that $U \subset V$ is a sub-representation of ρ if U is a linear subspace of V and U is invariant under ρ , namely: for every $g \in G$ it holds that $\rho(g)U = U$.

Definition (Irreducible-Representation). Let ρ be a representation of a group G in a vector space V. We say that ρ is an irreducible representation if it does not have any non trivial subrepresentations.

Lemma (L2.3). Let (ρ, V) be an irreducible representation of G. Let $v \in V$ be a non-zero vector. Then the set $\{\rho(g)v \mid v \in G\}$ spans V, and thus there exist $g_1, \ldots, g_k \in G$ such that $\{\rho(g_i)v\}_{i=1}^k$ is a basis for V.

Definition (Homomorphisms between Representations). Let ρ_1 be a representation of the group G in a vector space V and ρ_2 be a representation of the group G in a vector space W. We say that a linear mapping $T: V \to W$ is a homomorphism from (ρ_1, V) to (ρ_2, W) iff $\forall g \in G : \rho_2(g) \circ T = T \circ \rho_1(g)$.

Definition (Support). $supp(f) = \{x \in X \mid f(x) \neq 0\}$

Lemma (L2.5). Let U be a vector subspace of \mathbb{F}^X of the full support and let $|\mathbb{F}| \ge t$. Then there exist a vector $u \in U$ such that $|\operatorname{supp}(u)| \ge (1 - \frac{1}{t})|X|$.

Definition (Group Algebra). The group algebra $\mathbb{F}[G]$ is the set of all functions from G to \mathbb{F} . Addition in this group algebra is given by (f+g)(x) = f(x) + g(x) and multiplication is given by

$$(f * h)(x) = \sum_{g_1 \cdot g_2 = x} f(g_1)h(g_2)$$

We write $f \in \mathbb{F}[G]$ as a formal sum: $f = \sum_{i=1}^{n} f(g_i)g_i$ where the second appearance of g_i means an indicator function: $g_i(x) = 1$ if $x = g_i$ and $g_i(x) = 0$ else. We say that $f \in \mathbb{F}[G]$ is a *q*-sparse element if it has support of size at most *q* i.e., $f = \sum_{i=1}^{q} f(g_i)g_i$.

KLIM EFREMENKO

Let $\rho: G \to GL(V)$ be any representation of the group G. Then we can linearly extend ρ to the group algebra $\mathbb{F}[G]$ i.e., $\rho: \mathbb{F}[G] \to \operatorname{Mat}(V)$ (Mat(V) means all matrices on V) where $\rho(f)$ is defined as $\sum_{g \in G} f(g)\rho(g)$. Note that now $\rho(f)$ may be any matrix, not necessary invertible.

Definition (Dual Space). Let V be a linear vector space over field \mathbb{F} . Then the dual space of V, denoted V^* is the set of all linear functionals from V to \mathbb{F} .

Definition (Dual Basis). Let V be a vector space of dimension k. Let u_1, \ldots, u_k be a basis of V and v_1, \ldots, v_k be a basis of V^{*}. We say that these bases are dual if $v_i(u_j) = \delta_{ij}$, where δ_{ij} is Kronecker delta i.e., $\delta_{ij} = 1$ if i = j and zero otherwise.

Proposition (T2.9). The representation (ρ, V) is irreducible if and only if $(\bar{\rho}, V^*)$ is irreducible.

Definition (Locally Decodable Codes). A code $\mathcal{C} \colon \mathbb{F}^k \to \mathbb{F}^n$ is said to be (q, δ, ε) -locally decodable if there exists a randomized decoding algorithm D^w with an oracle access to the received word w such that the following holds:

- (1) For every message $m = (m_1, \ldots, m_k) \in \mathbb{F}^k$ and for every $w \in \mathbb{F}^n$ such that $\Delta(\mathcal{C}(m), w) \leq \delta n$, for every *i* it holds that $\Pr(D^w(i) = m_i) \geq 1 \varepsilon$, where probability is taken over internal randomness of *D*. This means that the decoding algorithm can recover the relevant symbol even if up to δ fraction of the codeword symbols are corrupted.
- (2) The algorithm $D^w(i)$ makes at most q queries to w.

Definition. A code $\mathcal{C} \colon \mathbb{F}^k \to \mathbb{F}^n$ is said to have a *c*-smooth decoder if $D^{\mathcal{C}(m)}(i) = m_i$ for every $m \in \mathbb{F}^k$ and for every *i*. Each query of D(i) is uniformly distributed over a domain of size *cn*.

Proposition (Fact 2.10). Any code with a c-smooth decoder which makes q queries is also $(q, \delta, \frac{q\delta}{c})$ locally decodable.

Theorem (T3.1). Let G be a group acting on a set X. Let (τ, \mathbb{F}^X) be the permutational representation defined by this action. Let (ρ, V) be a representation of G. Let $\mathcal{C} \colon V \to \mathbb{F}^X$ be a G-homomorphism between representations (ρ, V) and (τ, \mathbb{F}^X) . Assume that the following conditions hold:

(1) (a) There exists a q-sparse element $D \in \mathbb{F}[G]$, $D = \sum_{i=1}^{q} c_i g_i$ sucg that $\operatorname{rank}(\rho(D)) = 1$. (b) (ρ, V) is an irreducible representation.

(2) Let $v \in Im(\rho(D))$ be a non-zero vector. Then $\operatorname{supp}(\mathcal{C}(v)) \ge c|X|$.

Let $k = \dim V$. Then there exists a basis b_1, \ldots, b_k for V such that

$$(m_1,\ldots,m_k)\mapsto \mathcal{C}\left(\sum_{i=1}^k (m_i b_i)\right)$$

is a $(q, \delta, \frac{q\delta}{c})$ -Locally Decodable Code.

Lemma (L3.2). There exists a basis $\{b_1, \ldots, b_k\}$ for V and $h_1, \ldots, h_k \in G$ such that $b_i \in \ker(\rho(D * h_j))$ if and only if $i \neq j$.

Lemma (L3.3). Let V be a vector space over a field \mathbb{F} . Then for every irreducible representation (ρ, V) and for every $v \in V, v \neq 0$ there exist a homomorphism $\mathcal{C} \colon V \to \mathbb{F}[G]$ of representations (ρ, V) and the regular representation in $\mathbb{F}[G]$ such that $\operatorname{supp}(\mathcal{C}(v)) \geq |G|(1 - \frac{1}{|\mathbb{F}|})$.