Hypercontractivity, Sum-of-Squares Proofs, and their Applications

B. Barak, F. Brandão, A. Harrow, J. Kelner, D. Steurer, Y. Zhou Presented by Martin Böhm

Conj(*UGC*): For every $\varepsilon > 0$, the following problem is NP-hard:

"Given a system of equations $x_i - x_j = c \mod k$, answer Yes at least $1 - \varepsilon$ of equations are satisfiable, No otherwise."

UGC implies that for a large class of problems (Max Cut, Vertex Cover, Max CSP) SDP-approximations are the best possible.

D: $\Phi_G(S) = \frac{E(S,V-S)}{d|S|}$ and $\Phi_G(\delta)$ is the minimum of $\Phi_G(S)$ over sets with relative size δ .

Conj(*small-set expansion*): For every $\eta > 0$, there exists $\delta > 0$ such that the following problem is NP-hard:

"Given a (regular) graph G, answer Yes if $\Phi_G(\delta) \ge 1 - \eta$ and No otherwise."

Claim: SSEH implies UGC, the converse is not yet known.

Two main results of this work:

- An algorithm that solves all known hard UGC instances, including ones hard for other algorithms → UGC might not hold.
- SSEH, a natural strengthening of UGC, needs quasi-polynomial time \rightarrow UGC might hold.

D: A $p \to q$ norm $||A||_{p \to q}$ of a linear operator A between vector spaces of functions $\Omega \to \mathbb{R}$ is the smallest number $c \ge 0$ such that $||Af||_q \le c||f||_p$.

D: Such norm is hypercontractive when p < q.

D(*SDP hierarchy*): A relaxation of **SDP** into levels (rounds) where r rounds must be managable in time $n^{O(r)}$.

D: A functional \tilde{E} that maps a polynomial P over \mathbb{R}^n of degree at most r into a real number $\tilde{E}_x P(x)$ is a *level-r pseudo-expectation* (functional) if it satisfies:

- Linearity for polynomials of degree at most r,
- $\tilde{E}P^2 \ge 0$ for polynomials of degree at most r/2,
- $\tilde{E}1 = 1.$

D: Let P_0, \ldots, P_m be polynomials over \mathbb{R}^n of degree at most d, and lest $r \geq 2d$. The value of r-round SoS SDP for the program max P_0 subject to $P_i^2 = 0$ for $i \in [m]$ is equal to the maximum of \tilde{E}_{P_0} where \tilde{E} ranges over all level r pseudo-expectation functionals satisfying $\tilde{E}P_i^2 = 0 \forall i \in [m]$.

D: An algorithm provides a (c, C)-approximation for the $2 \to q$ norm if for an operator A on input, the algorithm then can distunguish between the case that $||A||_{2\to q} \leq c\sigma$ and the case that $||A||_{2\to q} \geq C\sigma$, where σ is the minimum nonzero singular value of A.

T(2.1): For every 1 < c < C, there is a $poly(n)exp(n^{2/q})$ -time algorithm that computes a (c, C)-approximation for the $2 \to q$ norm of any linear operator whose range is \mathbb{R}^n .

T(2.5, *informal*): Assuming ETH, then for any ε , δ satisfying $\varepsilon + \delta < 1$ the $2 \to 4$ norm of an $m \times m$ matrix A cannot be approximated to within an m^{ε} multiplicative factor in time less than $m^{\log \delta}(m)$ time. This hardness result holds even with A being a projector.

T(2.6, informal): Eight rounds of the SoS relaxation certifies that it is possible to satisfy at most 1/100 fraction of the constraints in Unique Games instances of the "quotient noisy cube" and "short code" types.

The 2-to-q norm and small-set expansion

For simplicity, we consider only regular graphs.

D: A measure μ of $S \subseteq V(G)$ will be |S|/|V|. G(S) will be the distribution obtained by picking a random $x \in S$ and then outputting a random neighbor y of x. Expansion $\Phi_G(S)$ can be then defined as $P_{y \in G(S)}[y \notin S]$.

We also identify G with its normalized adjacency matrix (adjacency matrix divided by d). The subspace $V_{\geq\lambda}(G)$ is defined as the span of eigenvectors of G with eigenvalue at least λ . The projector into such subspace will be denoted $P_{>\lambda(G)}$.

For a distribution D, we will use cp(D) to denote the collision probability of D (that two independent samples from D are identical).

T(2.4, equivalence): For every regular graph $G, \lambda > 0$ and even q:

• (Norm bound implies expansion)

$$\forall \delta > 0, \varepsilon > 0, ||P_{\geq \lambda}(G)||_{2 \to q} \leq \frac{\varepsilon}{\delta^{(q-2)/2q}}.$$

implies that $\Phi_G(\delta) > 1 - \lambda - \varepsilon^2$.

• (Expansion implies norm bound) There is a constant c such that

$$\forall \delta > 0, \Phi_G(\delta) > 1 - \lambda 2^{-cq}$$

implies that
$$||P_{\geq\lambda}(G)||_{2\to q} \leq \frac{2}{\sqrt{\delta}}$$

We will prove the second part of the theorem, as the previous one has already been proven before. We will require a few lemmas:

L(Cheeger): If $\Phi_G(\delta) \geq 1 - \eta$ then for all $f \in L_2(V)$ satisfying $||f||_1^2 \leq ||f||_2^2$ holds the following: $||Gf||_2^2 \leq c\sqrt{\eta}||f||_2^2$.

L: Let D be a distribution with $cp(D) \leq 1/N$ and g a function on a common ground set. Then $\exists T, |T| = N$ such that $E_{x \in T}[g(x)^2] \geq \frac{(E[g(D)])^2)}{2}$.

The essence of the second part of the theorem is contained in the following lemma:

L(Main lemma): Set $e = e(\lambda, q) = 2^{cq}/\lambda$, with a constant $c \leq 100$. Then for every $\lambda > 0$ and $\delta \in [0, 1]$, if G is a regular graph that satisfies $cp(G(S)) \leq 1/(e|S|)$ for all S with $\mu(S) \leq \delta$, then $||f||_q \leq 2||f||_2/\sqrt{\delta}$ for all $f \in V_{>\lambda}(G)$.

We will use several claims throughout the proof of the Main lemma. They are stated here without specifying the various variables that will be context-bound.

Claim: Let $S \subseteq V$ and $\beta > 0$ be such that $|S| \leq \delta$ and $|f(x)| \geq \beta$ for all $x \in S$. Then there is a set T of size at least e|S| such that $E_{x \in T}[g(x)^2] \geq \beta^2/4$.

Claim: $E_{x \in V}[g_i(x)^q] \ge e\alpha_{i_i}/(10c^2)^{q/2}.$

Claim(*The last claim***):** $E_{x \in T}[g'_k(x)^2] \le 100^{-i'}\beta_{i_j}^2/4.$