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Conj(UGC ): For every " > 0, the following problem is NP-hard:

“Given a system of equations xi � xj = c mod k, answer Yes at least
1� " of equations are satisfiable, No otherwise.”

UGC implies that for a large class of problems (Max Cut, Vertex
Cover, Max CSP) SDP-approximations are the best possible.

D: ΦG(S) = E(S,V−S)
d|S| and ΦG(�) is the minimum of ΦG(S) over

sets with relative size �.

Conj(small-set expansion): For every � > 0, there exists � > 0 such
that the following problem is NP-hard:

“Given a (regular) graph G, answer Yes if ΦG(�) � 1 � � and No
otherwise.”

Claim: SSEH implies UGC, the converse is not yet known.

Two main results of this work:

� An algorithm that solves all known hard UGC instances, including
ones hard for other algorithms ! UGC might not hold.

� SSEH, a natural strengthening of UGC, needs quasi-polynomial
time ! UGC might hold.

D: A p ! q norm jjAjjp→q of a linear operator A between vector
spaces of functions Ω ! R is the smallest number c � 0 such that
jjAf jjq � cjjf jjp.

D: Such norm is hypercontractive when p < q.

D(SDP hierarchy): A relaxation of SDP into levels (rounds) where r

rounds must be managable in time nO(r).

D: A functional Ẽ that maps a polynomial P over Rn of degree
at most r into a real number ẼxP (x) is a level-r pseudo-expectation
(functional) if it satisfies:

� Linearity for polynomials of degree at most r,
� ẼP2 � 0 for polynomials of degree at most r=2,
� Ẽ1 = 1.

D: Let P0; : : : ; Pm be polynomials over Rn of degree at most d, and
lest r � 2d. The value of r-round SoS SDP for the program max
P0 subject to P2i = 0 for i 2 [m] is equal to the maximum of ẼP0
where Ẽ ranges over all level r pseudo-expectation functionals satis-
fying ẼP2i = 08i 2 [m].

D: An algorithm provides a (c; C)-aproximation for the 2 ! q norm
if for an operator A on input, the algorithm then can distunguish
between the case that jjAjj2→q � c� and the case that jjAjj2→q � C�,
where � is the minimum nonzero singular value of A.

T(2.1): For every 1 < c < C, there is a poly(n)exp(n2/q)-time al-
gorithm that computes a (c; C)-approximation for the 2 ! q norm of
any linear operator whose range is Rn.

T(2.5, informal): Assuming ETH, then for any "; � satisfying "+� < 1
the 2 ! 4 norm of an m �m matrix A cannot be approximated to

within an mεmultiplicative factor in time less than mlog
δ(m) time.

This hardness result holds even with A being a projector.

T(2.6, informal): Eight rounds of the SoS relaxation certifies that
it is possible to satisfy at most 1=100 fraction of the constraints in
Unique Games instances of the “quotient noisy cube” and “short
code” types.

The 2-to-q norm and small-set expansion
For simplicity, we consider only regular graphs.

D: A measure � of S � V (G) will be jSj=jV j. G(S) will be the
distribution obtained by picking a random x 2 S and then outputting
a random neighbor y of x. Expansion ΦG(S) can be then defined as
Py∈G(S)[y 62 S].

We also identify G with its normalized adjacency matrix (adjacency
matrix divided by d). The subspace V≥λ(G) is defined as the span of
eigenvectors of G with eigenvalue at least �. The projector into such
subspace will be denoted P≥λ(G).

For a distribution D, we will use cp(D) to denote the collision proba-
bility of D (that two indepedent samples from D are identical).

T(2.4, equivalence ): For every regular graph G, � > 0 and even q:

� (Norm bound implies expansion)

8� > 0; " > 0; jjP≥λ(G)jj2→q �
"

�(q−2)/2q
:

implies that ΦG(�) � 1� �� "2.
� (Expansion implies norm bound) There is a constant c such that

8� > 0;ΦG(�) > 1� �2−cq

implies that jjP≥λ(G)jj2→q � 2√
δ

.

We will prove the second part of the theorem, as the previous one has
already been proven before. We will require a few lemmas:

L(Cheeger): If ΦG(�) � 1 � � then for all f 2 L2(V ) satisfying
jjf jj21 � jjf jj22 holds the following: jjGf jj22 � c

p
�jjf jj22.

L: Let D be a distribution with cp(D) � 1=N and g a function on
a common ground set. Then 9T; jT j = N such that Ex∈T [g(x)2] �
(E[g(D)])2)

4 .

The essence of the second part of the theorem is contained in the
following lemma:

L(Main lemma): Set e = e(�; q) = 2cq=�, with a constant c � 100.
Then for every � > 0 and � 2 [0; 1], if G is a regular graph that satisfies
cp(G(S)) � 1=(ejSj) for all S with �(S) � �, then jjf jjq � 2jjf jj2=

p
�

for all f 2 V≥λ(G).

We will use several claims throughout the proof of the Main lemma.
They are stated here without specifying the various variables that will
be context-bound.

Claim: Let S � V and � > 0 be such that jSj � � and jf(x)j � �
for all x 2 S. Then there is a set T of size at least ejSj such that
Ex∈T [g(x)2] � �2=4.

Claim: Ex∈V [gj(x)q ] � e�ij =(10c2)q/2.

Claim(The last claim): Ex∈T [g′
k

(x)2] � 100−i
′
�2ij

=4.


