Hypercontractivity, Sum-of-Squares Proofs, and their Applications

B. Barak, F. Brandão, A. Harrow, J. Kelner, D. Steurer, Y. Zhou

Presented by Martin Böhm

$\operatorname{Conj}(U G C):$ For every $\varepsilon>0$, the following problem is NP-hard:
"Given a system of equations $x_{i}-x_{j}=c \bmod k$, answer Yes at least $1-\varepsilon$ of equations are satisfiable, No $=$ morwise"

UGC implies that for a large class of problems (Max Cut, Vertex Cover, Max CSP) SDP-approximations are the best possible.
D: $\Phi_{G}(S)=\frac{E(S, V-S)}{d|S|}$ and $\Phi_{G}(\delta)$ is the minimum of $\Phi_{G}(S)$ over sets with relative size δ.

Conj(small-set expansion): For every $\eta>0$, there exists $\delta>0$ such that the following problem is NP-hard:
"Given a (regular) graph G, answer Yes if $\Phi_{G}(\delta) \geq 1-\eta$ and No otherwise."
Claim: SSEH implies UGC, the converse is not yet known.
Two main results of this work

- An algorithm that solves all known hard UGC instances, including ones hard for other algorithms \rightarrow UGC might not hold.
- SSEH, a natural strengthening of UGC, needs quasi-polynomia time \rightarrow UGC might hold.

D: A $p \rightarrow q$ norm $\|A\|_{p \rightarrow q}$ of a linear operator A between vector spaces of functions $\Omega \rightarrow \mathbb{R}$ is the smallest number $c \geq 0$ such that $\|A f\|_{q} \leq c\|f\|_{p}$
D: Such norm is hypercontractive when $p<q$.
$\mathbf{D}(S D P$ hierarchy): A relaxation of SDP into levels (rounds) where r rounds must be managable in time $n O(r)$
D: A functional \tilde{E} that maps a polynomial P over \mathbb{R}^{n} of degree at most r into a real number $\tilde{E}_{x} P(x)$ is a level-r pseudo-expectation (functional) if it satisfies:

- Linearity for polynomials of degree at most r,
- $\tilde{E} P^{2} \geq 0$ for polynomials of degree at most $r / 2$
- $\tilde{E} 1=1$.

D: Let P_{0}, \ldots, P_{m} be polynomials over \mathbb{R}^{n} of degree at most d, and lest $r \geq 2 d$. The value of r-round SoS SDP for the program max P_{0} subject to $P_{i}^{2}=0$ for $i \in[m]$ is equal to the maximum of $\tilde{E}_{P_{0}}$ where \tilde{E} ranges over all level r pseudo-expectation functionals satisfying $\tilde{E} P_{i}^{2}=0 \forall i \in[m]$.
D: An algorithm provides a (c, C)-aproximation for the $2 \rightarrow q$ norm if for an operator A on input, the algorithm then can distunguish between the case that $\|A\|_{2 \rightarrow q} \leq c \sigma$ and the case that $\|A\|_{2 \rightarrow q} \geq C \sigma$ where σ is the minimum nonzero singular value of A
\mathbf{T} (2.1): For every $1<c<C$, there is a $\operatorname{poly}(n) \exp \left(n^{2 / q}\right)$-time algorithm that computes a (c, C)-approximation for the $2 \rightarrow q$ norm of any linear operator whose range is \mathbb{R}^{n}.
$\mathbf{T}(2.5$, informal $)$: Assuming ETH, then for any ε, δ satisfying $\varepsilon+\delta<1$ the $2 \rightarrow 4$ norm of an $m \times m$ matrix A cannot be approximated to within an m^{ε} multiplicative factor in time less than $m^{\log (m)}$ time This hardness result holds even with A being a projector.
$\mathbf{T}(2.6$, informal): Eight rounds of the SoS relaxation certifies that it is possible to satisfy at most $1 / 100$ fraction of the constraints in Unique Games instances of the "quotient noisy cube" and "short code" types.

The 2-to-q norm and small-set expansion

For simplicity, we consider only regular graphs.
D: A measure μ of $S \subseteq V(G)$ will be $|S| /|V| . \quad G(S)$ will be the distribution obtained by picking a random $x \in S$ and then outputting a random neighbor y of x. Expansion $\Phi_{G}(S)$ can be then defined as $P_{y \in G(S)}[y \notin S]$.
We also identify G with its normalized adjacency matrix (adjacency matrix divided by d). The subspace $V_{>\lambda}(G)$ is defined as the span of eigenvectors of G with eigenvalue at least λ. The projector into such subspace will be denoted $P_{\geq \lambda(G)}$.
For a distribution D, we will use $c p(D)$ to denote the collision probability of D (that two indepedent samples from D are identical).
\mathbf{T} (2.4, equivalence): For every regular graph $G, \lambda>0$ and even q

- (Norm bound implies expansion)

$$
\forall \delta>0, \varepsilon>0,\left\|P_{\geq \lambda}(G)\right\|_{2 \rightarrow q} \leq \frac{\varepsilon}{\delta(q-2) / 2 q} .
$$

implies that $\Phi_{G}(\delta) \geq 1-\lambda-\varepsilon^{2}$.

- (Expansion implies norm bound) There is a constant c such that

$$
\forall \delta>0, \Phi_{G}(\delta)>1-\lambda 2^{-c q}
$$

implies that $\left\|P_{\geq \lambda}(G)\right\|_{2 \rightarrow q} \leq \frac{2}{\sqrt{\delta}}$.
We will prove the second part of the theorem, as the previous one has already been proven before. We will require a few lemmas:
$\mathrm{L}\left(\right.$ Cheeger): If $\Phi_{G}(\delta) \geq 1-\eta$ then for all $f \in L_{2}(V)$ satisfying $\|f\|_{1}^{2} \leq\|f\|_{2}^{2}$ holds the following: $\|G f\|_{2}^{2} \leq c \sqrt{\eta}\|f\|_{2}^{2}$.
L: Let D be a distribution with $c p(D) \leq 1 / N$ and g a function on a common ground set. Then $\exists T,|T|=N$ such that $E_{x \in T}\left[g(x)^{2}\right] \geq$ $\frac{\left.(E[g(D)])^{2}\right)}{4}$.
The essence of the second part of the theorem is contained in the following lemma:
L (Main lemma): Set $e=e(\lambda, q)=2^{c q} / \lambda$, with a constant $c \leq 100$. Then for every $\lambda>0$ and $\delta \in[0,1]$, if G is a regular graph that satisfies $c p(G(S)) \leq 1 /(e|S|)$ for all S with $\mu(S) \leq \delta$, then $\|f\|_{q} \leq 2\|f\|_{2} / \sqrt{\delta}$ for all $f \in V_{\geq \lambda}(G)$.
We will use several claims throughout the proof of the Main lemma. They are stated here without specifying the various variables that will be context-bound.
Claim: Let $S \subseteq V$ and $\beta>0$ be such that $|S| \leq \delta$ and $|f(x)| \geq \beta$ for all $x \in S$. Then there is a set T of size at least $e|S|$ such that $E_{x \in T}\left[g(x)^{2}\right] \geq \beta^{2} / 4$.
Claim: $E_{x \in V}\left[g_{j}(x)^{q}\right] \geq e \alpha_{i_{j}} /\left(10 c^{2}\right)^{q / 2}$.
Claim(The last claim): $E_{x \in T}\left[g_{k}^{\prime}(x)^{2}\right] \leq 100^{-i^{\prime}} \beta_{i_{j}}^{2} / 4$.

