
Tight Lower Bounds for Halfspace Range Searching
Sunil Arya, David M. Mount and Jian Xia

Presented by Josef Cibulka

• Given is a set P of n points in Rd with weights from a commutative semigroup.
The task is to preprocess the set to be able to quickly answer queries asking the sum
of elements lying within any halfspace.
• t(n,m) . . . time needed to answer a query in the optimal algorithm with O(m)
memory in the case of an idempotent semigroup (∀x : x+ x = x)
• t′(n,m) . . . time needed to answer . . . in the case of an integral semigroup (∀k ≥
2,∀x : the k-fold sum x+ · · ·+ x is not equal x)
• Õ, Ω̃ . . . ignoring logO(1)(n)–factors
• µ(K) . . . measure of K ⊂ Rd

Previous bounds. When n ≤ m ≤ nd,

Ω̃
(
n1−(d−1)/(d2+d)/m1/d

)
≤ t(n,m) ≤ O

(
n1−1/(d+1)/m1/(d+1)

)
Ω̃
(
n/m(d+1)/(d2+1)

)
≤ t′(n,m) ≤ O

(
n/m1/d

)
.

The upper bound on t(n,m) assumes that P is uniformly distributed.

Theorem 1. New lower bounds:

Ω̃
(
n1−1/(d+1)/m1/(d+1)

)
≤ t(n,m)

Ω̃
(
n/m1/d

)
≤ t′(n,m)

Assumptions.
• Preprocessing . . . determining sums in generators (sets G such that conv(G)∩P =
G); G . . . set of used generators, m = |G|
• Time of query for a halfspace H . . . minimum number of generators whose union
is H ∩ P .
• In the integral case, the generators are disjoint.

cap C K

halfspace H

breadth(K,H)
width(C)

width(K,H)

Choice of P and the ranges.
• P is inside the unit cube U = [0, 1]d
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• P is scattered, that is, for every K ⊂ U:

− µ(K) ≥ a log n/n⇒ |K ∩ P | ≥ (n/a)µ(K)

− |K ∩ P | ≥ log n⇒ µ(K) ≥ |K ∩ P |/(na)
• Hq . . . halfspace containing the origin O and with boundary passing through q and
orthogonal to qO
• the query range is a random hyperplane Hq where q is taken from the ball of radius
1/4 centered at (1/2, . . . , 1/2) using probability measure

∫
(1/‖q‖d−1)dx1...dxd

• A slab S∆(H) of width ∆ is the set of points of H at distance at most ∆ from the
bounding hyperplane of H.
• Given n, m and t = t(n,m), let ∆0 = c0t log n/n. We will consider the slab
S∆0(H) (the region of interest) of a randomly picked halfspace H and show that
many of the generators may be needed to contain all the points of P in the slab
without containing anything outside H.

Lemma (Chazelle 1989). For a convex body K ⊂ U, a random H from the above
probabilistic space and ∆ > 0:

µ(K)Pr[K ⊂ S∆(H)] = O(∆d+1).

Idea of the proof in the idempotent case

Lemma (Lemma 4.2). Consider a convex body K ⊂ R of surface area O(1) and real
numbers ∆, v > 0. There are O(∆/v) convex bodies K1,K2, . . . ( Macbeath regions)
such that for every cap C of K with width(C) ≤ ∆ and µ(C) ≥ v one of Ki satisfies:

− µ(Ki) ≥ Ω(µ(C)) and

− Ki ⊂ C.

• The proof of the idempotent case proceeds by considering a generatorG lying inside
H and containing at least log n points inside the region of interest RH (“interesting”
generator). Then µ(conv(G) ∩ RH) is large (since P is scattered), so one of the
Macbeath regions of the generator lies within the region of interest (by Lemma 4.2),
but this has small probability by the Lemma of Chazelle.

Idea of the proof in the integral case
• A convex body K is α-fat if there are two concentric balls B− and B+ such that
B− ⊂ K ⊂ B+ and with ratio between the radii of B+ and B− at most α.

Lemma (Lemma 4.5). Consider an α-fat compact convex body K ⊂ Rd and two
parameters β ≥ 1 and ∆ > 0. There exists a collection of O(β logα) convex bodies
K1,K2, . . . ⊂ K satisfying the following property: Let H be a halfspace, and let C
be the cap K ∩H. If width(C) ≤ ∆ and µ(C) ≥ breadth(K,H)∆/β, then some Ki

satisfies:

− µ(Ki) ≥ Ω(µ(C)) and

− Ki ⊂ C.

• To be able to apply Lemma 4.5, we say that a generator G is interesting if it is
lying inside H, contains at least log n points inside the region of interest RH and
either G ⊂ RH or

|G ∩RH | ≥
breadth(G,H)∆0n

c log(1/∆0)
.

It is shown that most points in the region of interest lie in the interesting genera-
tors, since otherwise the generators covering the region of interest would have large
breaths and would not fit inside U (since they are disjoint).
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