New results for the growth of sets of real numbers

Timothy G. F. Jones

Presented by Zuzana Safernová

 $A \subseteq \mathbb{R}$ finite; $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$; $X \ll Y$ -there is an absolute constant C with $X \leq CY$

Definition 1 An *n*-variable expander is a function f for which the set $f(A) = \{f(a_1, \ldots, a_n) : a_i \in A\}$ has cardinality at least $\Omega(|A|^{1+\delta})$ for some absolute $\delta > 0$.

Definition 2 For distinct $a, b, c, d \in \mathbb{R}$ the cross ratio X(a, b, c, d) is defined by

$$X(a, b, c, d) = \frac{(a-b)(c-d)}{(b-c)(a-d)}.$$

Theorem 3 Let $f(a, b, c) = X(0, a, b, c) \in \mathbb{R}$. Then $|f(A)| \gg \frac{|A|^2}{\log |A|}$.

Theorem 4 Let $g(a, b, c, d) = X(a, b, c, d) \in \mathbb{R}$. Then $|g(A)| \gg |A|^2$.

Theorem 5 Let $h(a, b, c, d, e) = (X(a, b, c, d), X(a, b, c, e)) \in \mathbb{R}^2$. Then $|h(A)| \gg \frac{|A|^4}{\log |A|}$.

Question 6 Can Theorems 3, 4 and 5 be improved?

Towards the proofs

Definition 7 The group $PGL_2(\mathbb{R})$ of projective transformations of $\overline{\mathbb{R}}$ is defined by $GL_2(\mathbb{R})/I$, where $I = cI_2, 0 \neq c \in \mathbb{R}$. It has an action on $\overline{\mathbb{R}}$ given by $\left[\begin{pmatrix} p & q \\ r & s \end{pmatrix} \right] x = \frac{px+q}{rx+s}$, which is interpreted in the sense of limits where necessary.

Lemma 8 Let \mathcal{T} be the set of ordered triples of distinct elements of \mathbb{R} . If (a, b, c) and (d, e, f) are both in \mathcal{T} then there is a unique $\tau \in PGL_2(\mathbb{R})$ for which $(\tau(a), \tau(b), \tau(c)) = (d, e, f)$.

Lemma 9 $X(a_1, a_2, a_3, a_4) = X(b_1, b_2, b_3, b_4)$ iff $\exists \tau \in PGL_2(\mathbb{R}): \tau(a_i) = b_i$ for all i.

Lemma 10 (Points lemma) Define $\psi: PGL_2(\mathbb{R}) \to \mathbb{PR}^3$ by $\psi \begin{bmatrix} p & q \\ r & s \end{bmatrix} = [p, q, r, s]$. The map ψ is well-defined, injective and its image is $\mathbb{PR}^3 \setminus Q$, where Q is given by ps = qr.

Lemma 11 (Planes lemma) Let ψ be as in the points lemma. For each $(a,b) \in \mathbb{R}^2$ there is a plane $\pi_{ab} \subseteq \mathbb{PR}^3$ such that if $\tau \in PGL_2(\mathbb{R})$ then $\tau(a) = b$ iff $\psi(\tau) \in \pi_{ab}$. These planes have the following properties:

- 1. Any triple of distinct planes intersects in a single point.
- 2. Each $(a, b) \in \mathbb{R}^2$ determines a unique plane.
- 3. Each pair of distinct planes intersects in a unique line.
- 4. For any $A \subseteq \mathbb{R}$, a point $p \in \mathbb{PR}^3 \setminus Q$ is incident to at most |A| of the planes from $\{\pi_{ab}: a, b \in A\}$.