The distance approach to approximate combinatorial counting

A. Barvinok, A. Samorodnitsky
presented by Tomáš Gavenčiak

Problem: Given a subset \mathcal{F} of $2^{X},|X|=n$, estimate $|\mathcal{F}|$.
Variations: How is \mathcal{F} given? Various kinds of oracles.
Examples: Perfect matchings $\left(X=E_{G}\right)$, linearly indep. subsets (X matroid elements), heterochromatic spanning trees $\left(X=E_{G}\right)$.

Different estimation methods

Simple Monte Carlo

Sample a point $x \in 2^{X}$, see if $x \in \mathcal{F}$. Can estimate only $|\mathcal{F}| \sim \alpha 2^{n}, 0 \leq \alpha \leq 1$.

Markov chain Monte Carlo

Define $\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{k}=\mathcal{F}$ with $\left|\mathcal{F}_{i+1}\right|=O\left(\right.$ poly $\left.\left(\left|\mathcal{F}_{i}\right|\right)\right)$ and known $\left|\mathcal{F}_{0}\right|$. Product estimators: estimate $\left|\mathcal{F}_{i+1}\right| /\left|\mathcal{F}_{i}\right|$ by Monte Carlo uniform sampling from \mathcal{F}_{i+1}. Needs fastconvergent Markov chains for every \mathcal{F}_{i}. Can be very accurate.

Distance approach
Embed \mathcal{F} as $F \subseteq C_{n}$, sample a point $x \in C_{n}$ and compute $\operatorname{dist}(x, F)$, estimate $\Delta(F)$ expected (average) distance to F. Can estimate $2^{\alpha_{1} n} \leq|\mathcal{F}| \leq 2^{\alpha_{2} n}$ for some $0 \leq \alpha_{1}<\alpha_{2} \leq 1$.

Problem oracles

Optimization oracle. Given weights $\gamma_{x}, x \in X$, return $\min _{Y \in \mathcal{F}} \sum_{x \in Y} \gamma_{x}$.
Hamming distance oracle. Given $a \in C_{n}$, return min $\operatorname{dist}(a, F)$.
For given penalties $d_{i}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{Z}$, define $d(a, b)=\sum_{i} d_{i}\left(a_{i}, b_{i}\right)$.
Weighted distance oracle. Given $a \in C_{n}$ and penalties d_{i}, return $\min d(a, F)$.
Simple embedding. Assume $X=\{1 \ldots n\}$. Map $Y \in \mathcal{F}$ to its characteristic vector. To solve dist. oracle for a and penalties d_{i}, set $\gamma_{i}=d_{i}\left(a_{i}, 1\right)-d_{i}\left(a_{i}, 0\right)$.
Economical embedding. Assume $X=\{1 \ldots n\}, X=X_{1} \cup \cdots \cup X_{k}$ (not disjoint) such that $\forall Y \in \mathcal{F} \forall i:\left|X_{i} \cap Y\right|=1$. Map $Y \in \mathcal{F}$ to $\left(y_{1} \ldots y_{k}\right), y_{i}=\#_{i}\left(X_{i} \cap Y\right)$.

Estimating average distance

Average distance. $\Delta(A)=1 / 2^{n} \sum_{x \in C_{n}} \operatorname{dist}(x, A)=\mathbb{E}_{x}[\operatorname{dist}(x, A)]$.
Algorithm estimating $\Delta(A)$. Given ϵ, sample $\left\lceil 3 n / 2 \epsilon^{2}\right\rceil$ points x_{i}, return average of $\operatorname{dist}\left(x_{i}, A\right)$.
Theorem 3.6. Algorithm returns α with $|\Delta(A)-\alpha| \leq \epsilon$ with 0.9 probability.

Estimating size of $|F|$

Entropy function. $H(x)=x \log _{2}(1 / x)+(1-x) \log _{2}(1 /(1-x))$.
Theorem 3.9. Let $\rho=1 / 2-\Delta(A) / n$, then

$$
1-H\left(\frac{1}{2}-\rho\right) \leq \frac{\log _{2}|A|}{n} \leq H(\rho)
$$

Corollary 3.11. There are $c_{1}, c_{2}>0$ such that for $\rho=1 / 2-\Delta(A) / n$

$$
c_{1} \rho^{2} \leq \frac{\log _{2}|A|}{n} \leq c_{2} \rho \log _{2} \frac{1}{\rho},
$$

and this holds for any $c_{1}<2, c_{2}>1$ for $\rho>0$ sufficiently small.

Randomized average distance

Distance for selected coordinates $l . d_{l}(a, b)=\sum_{i} l_{i}\left|a_{i}-b_{i}\right|$.
Randomized average distance. $\Delta(A, p)=\mathbb{E}_{x \in C_{n}} \mathbb{E}_{l \in \operatorname{Binom}^{n}(1, p)} d_{l}(x, A)$.
Algorithm estimating $\Delta(A, p)$. Given p and ϵ, sample $\left\lceil 3 n / \epsilon^{2}\right\rceil$ points $x_{i} \in C_{n}$ together with $l_{i} \in\{0,1\}^{n}$. Return average of $d_{l_{i}}\left(x_{i}, A\right)$.
Theorem 4.4. Algorithm returns α with $|\Delta(A, p)-\alpha| \leq \epsilon$ with 0.9 probability.
Theorem 4.5. Let $\rho=p / 2-\Delta(A, p) / n$, then $\rho^{2} / p \leq \ln (|A|) / n$ and with $\rho \leq 1 / 2$ and some additional assumptions, $\log _{2}(|A|) / n \leq H(2 \rho)$
Corollary 4.6. For any $c_{3}<1 / \ln (2)$ and $c_{4}>2$, there is $\delta>0$ such that for any A with $\ln (|A|) / n \leq \delta$ there is some p such that for $\rho=p / 2-\Delta(A, p) / n$,

$$
c_{3} \rho^{2} \log _{2} \frac{1}{\rho} \leq \frac{\log _{2}(|A|)}{n} \leq c_{4} \rho \log _{2} \frac{1}{\rho} .
$$

