
The distance approach to approximate combinatorial counting

A. Barvinok, A. Samorodnitsky

presented by Tomáš Gavenčiak

Problem: Given a subset F of 2X , |X| = n, estimate |F|.
Variations: How is F given? Various kinds of oracles.

Examples: Perfect matchings (X = EG), linearly indep. subsets (X matroid elements),
heterochromatic spanning trees (X = EG).

Different estimation methods

Simple Monte Carlo

Sample a point x ∈ 2X , see if x ∈ F . Can estimate only |F| ∼ α2n, 0 ≤ α ≤ 1.

Markov chain Monte Carlo

Define F0 ⊆ F1 ⊆ · · · ⊆ Fk = F with |Fi+1| = O(poly(|Fi|)) and known |F0|. Product
estimators: estimate |Fi+1|/|Fi| by Monte Carlo uniform sampling from Fi+1. Needs fast-
convergent Markov chains for every Fi. Can be very accurate.

Distance approach

Embed F as F ⊆ Cn, sample a point x ∈ Cn and compute dist(x, F ), estimate ∆(F ) expected
(average) distance to F . Can estimate 2α1n ≤ |F| ≤ 2α2n for some 0 ≤ α1 < α2 ≤ 1.

Problem oracles

Optimization oracle. Given weights γx, x ∈ X, return minY ∈F
∑

x∈Y γx.

Hamming distance oracle. Given a ∈ Cn, return min dist(a, F ).

For given penalties di : {0, 1} × {0, 1} → Z, define d(a, b) =
∑

i di(ai, bi).

Weighted distance oracle. Given a ∈ Cn and penalties di, return min d(a, F ).

Simple embedding. Assume X = {1 . . . n}. Map Y ∈ F to its characteristic vector. To
solve dist. oracle for a and penalties di, set γi = di(ai, 1)− di(ai, 0).

Economical embedding. Assume X = {1 . . . n}, X = X1∪· · ·∪Xk (not disjoint) such that
∀Y ∈ F∀i : |Xi ∩ Y | = 1. Map Y ∈ F to (y1 . . . yk), yi = #i(Xi ∩ Y ).



Estimating average distance

Average distance. ∆(A) = 1/2n
∑

x∈Cn
dist(x,A) = Ex[dist(x,A)].

Algorithm estimating ∆(A). Given ε, sample d3n/2ε2e points xi, return average of
dist(xi, A).

Theorem 3.6. Algorithm returns α with |∆(A)− α| ≤ ε with 0.9 probability.

Estimating size of |F |

Entropy function. H(x) = x log2(1/x) + (1− x) log2(1/(1− x)).

Theorem 3.9. Let ρ = 1/2−∆(A)/n, then
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Corollary 3.11. There are c1, c2 > 0 such that for ρ = 1/2−∆(A)/n
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and this holds for any c1 < 2, c2 > 1 for ρ > 0 sufficiently small.

Randomized average distance

Distance for selected coordinates l. dl(a, b) =
∑

i li|ai − bi|.
Randomized average distance. ∆(A, p) = Ex∈CnEl∈Binomn(1,p)dl(x,A).

Algorithm estimating ∆(A, p). Given p and ε, sample d3n/ε2e points xi ∈ Cn together
with li ∈ {0, 1}n. Return average of dli(xi, A).

Theorem 4.4. Algorithm returns α with |∆(A, p)− α| ≤ ε with 0.9 probability.

Theorem 4.5. Let ρ = p/2−∆(A, p)/n, then ρ2/p ≤ ln(|A|)/n and with ρ ≤ 1/2 and some
additional assumptions, log2(|A|)/n ≤ H(2ρ)

Corollary 4.6. For any c3 < 1/ ln(2) and c4 > 2, there is δ > 0 such that for any A with
ln(|A|)/n ≤ δ there is some p such that for ρ = p/2−∆(A, p)/n,
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