The distance approach to approximate combinatorial counting

A. Barvinok, A. Samorodnitsky

presented by Tomáš Gavenčiak

Problem: Given a subset \mathcal{F} of 2^X , |X| = n, estimate $|\mathcal{F}|$.

Variations: How is \mathcal{F} given? Various kinds of oracles.

Examples: Perfect matchings $(X = E_G)$, linearly indep. subsets (X matroid elements), heterochromatic spanning trees $(X = E_G)$.

Different estimation methods

Simple Monte Carlo

Sample a point $x \in 2^X$, see if $x \in \mathcal{F}$. Can estimate only $|\mathcal{F}| \sim \alpha 2^n$, $0 \le \alpha \le 1$.

Markov chain Monte Carlo

Define $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_k = \mathcal{F}$ with $|\mathcal{F}_{i+1}| = O(poly(|\mathcal{F}_i|))$ and known $|\mathcal{F}_0|$. Product estimators: estimate $|\mathcal{F}_{i+1}|/|\mathcal{F}_i|$ by Monte Carlo uniform sampling from \mathcal{F}_{i+1} . Needs fast-convergent Markov chains for every \mathcal{F}_i . Can be very accurate.

Distance approach

Embed \mathcal{F} as $F \subseteq C_n$, sample a point $x \in C_n$ and compute dist(x, F), estimate $\Delta(F)$ expected (average) distance to F. Can estimate $2^{\alpha_1 n} \leq |\mathcal{F}| \leq 2^{\alpha_2 n}$ for some $0 \leq \alpha_1 < \alpha_2 \leq 1$.

Problem oracles

Optimization oracle. Given weights $\gamma_x, x \in X$, return $\min_{Y \in \mathcal{F}} \sum_{x \in Y} \gamma_x$.

Hamming distance oracle. Given $a \in C_n$, return min dist(a, F).

For given penalties $d_i: \{0,1\} \times \{0,1\} \to \mathbb{Z}$, define $d(a,b) = \sum_i d_i(a_i,b_i)$.

Weighted distance oracle. Given $a \in C_n$ and penalties d_i , return min d(a, F).

Simple embedding. Assume $X = \{1 \dots n\}$. Map $Y \in \mathcal{F}$ to its characteristic vector. To solve dist. oracle for a and penalties d_i , set $\gamma_i = d_i(a_i, 1) - d_i(a_i, 0)$.

Economical embedding. Assume $X = \{1 \dots n\}, X = X_1 \cup \dots \cup X_k \text{ (not disjoint) such that } \forall Y \in \mathcal{F} \forall i : |X_i \cap Y| = 1.$ Map $Y \in \mathcal{F}$ to $(y_1 \dots y_k), y_i = \#_i(X_i \cap Y).$

Estimating average distance

Average distance. $\Delta(A) = 1/2^n \sum_{x \in C_n} \operatorname{dist}(x, A) = \mathbb{E}_x[\operatorname{dist}(x, A)].$

Algorithm estimating $\Delta(A)$. Given ϵ , sample $\lceil 3n/2\epsilon^2 \rceil$ points x_i , return average of dist (x_i, A) .

THEOREM 3.6. Algorithm returns α with $|\Delta(A) - \alpha| \leq \epsilon$ with 0.9 probability.

Estimating size of |F|

Entropy function. $H(x) = x \log_2(1/x) + (1-x) \log_2(1/(1-x))$. THEOREM 3.9. Let $\rho = 1/2 - \Delta(A)/n$, then

$$1 - H\left(\frac{1}{2} - \rho\right) \le \frac{\log_2|A|}{n} \le H(\rho).$$

COROLLARY 3.11. There are $c_1, c_2 > 0$ such that for $\rho = 1/2 - \Delta(A)/n$

$$c_1 \rho^2 \le \frac{\log_2 |A|}{n} \le c_2 \rho \log_2 \frac{1}{\rho},$$

and this holds for any $c_1 < 2, c_2 > 1$ for $\rho > 0$ sufficiently small.

Randomized average distance

Distance for selected coordinates l. $d_l(a, b) = \sum_i l_i |a_i - b_i|$. Randomized average distance. $\Delta(A, p) = \mathbb{E}_{x \in C_n} \mathbb{E}_{l \in \text{Binom}^n(1,p)} d_l(x, A)$.

Algorithm estimating $\Delta(A, p)$. Given p and ϵ , sample $\lceil 3n/\epsilon^2 \rceil$ points $x_i \in C_n$ together with $l_i \in \{0, 1\}^n$. Return average of $d_{l_i}(x_i, A)$.

THEOREM 4.4. Algorithm returns α with $|\Delta(A, p) - \alpha| \leq \epsilon$ with 0.9 probability.

THEOREM 4.5. Let $\rho = p/2 - \Delta(A, p)/n$, then $\rho^2/p \le \ln(|A|)/n$ and with $\rho \le 1/2$ and some additional assumptions, $\log_2(|A|)/n \le H(2\rho)$

COROLLARY 4.6. For any $c_3 < 1/\ln(2)$ and $c_4 > 2$, there is $\delta > 0$ such that for any A with $\ln(|A|)/n \leq \delta$ there is some p such that for $\rho = p/2 - \Delta(A, p)/n$,

$$c_3 \rho^2 \log_2 \frac{1}{\rho} \le \frac{\log_2(|A|)}{n} \le c_4 \rho \log_2 \frac{1}{\rho}.$$