presented by Marek Krčál
$\forall u_{1} \ldots u_{m} \in \mathbb{R}^{n}$ where $\left\|u_{i}\right\| \leq 1, \quad \forall P \subseteq \mathbb{R}^{n}$ polytope If $\underbrace{\left\{\left|\left\langle x, u_{i}\right\rangle\right| \leq 1 \text { for } i=1, \ldots, m\right\}} \subseteq P \subseteq$

then P has at least $2^{\gamma n}$ vertices.

Pf of Thm 1. Choose $\beta=\beta(\alpha)$ "big enough':'
$\operatorname{Pr}_{y}\left[\max _{x \in P}\langle y, x\rangle \geq \frac{n}{2 \beta}\right] \geq \operatorname{Pr}_{y}\left[\begin{array}{c}y \in \beta Q \\ \|y\|^{2} \geq \frac{n}{2}\end{array}\right] \geq\left(\begin{array}{c}\left.1-e^{-\frac{\beta}{2}}\right)^{\alpha n} \\ -e^{-\frac{n}{16}}\end{array}\right.$
$\operatorname{Pr}_{y}\left[\max _{v \in W}\langle y, v\rangle \geq \tau\right] \leq \sum_{v \in W} \operatorname{Pr}_{y}[\langle y, v\rangle \geq \tau] \leq \frac{|W|}{2} e^{-\frac{\tau^{2}}{2\|v\|^{2}}}$ $\leq \frac{|W|}{2} e^{-\frac{n}{8 \alpha^{2} \beta^{2}}}$

Lemma 1. Let $y \in \mathbb{R}^{n}$ be a random Gaussian vector. Then $\forall n>16$
$P_{r}(G) \subseteq \mathbb{R}^{|E|}$ - the convex hull of all indicators χ_{H} where H are r-factors of a given $G=(V, E)$ is given by

$$
\begin{array}{rlr}
x_{e} \in[0,1] & \text { for all } e \in E \\
\sum_{e \in \delta(V)} x_{e}=r & \text { for all } v \in V
\end{array}
$$

$\sum_{e \in \delta(V) \backslash F} x_{e}-\sum_{e \in F} x_{e} \geq 1-|F| \begin{aligned} & \text { for all } U \subseteq V, F \subseteq \delta(U \\ & \text { s. t. } r|U|+|F| \text { is odd }\end{aligned}$

Theorem 2. $\forall k, r>0$ with $k \geq 2 r+1$
there is $\gamma=\gamma(k, r)$ s. t.:
Let G be a k-regular graph such that
$\begin{array}{cc}|\delta(U)|>\frac{k}{r} & \text { for every } U \subseteq V \text { such that } \\ 2 \leq|U| \leq|V|-2 .\end{array}$
Then the number of r-factors of G is at least $2^{\gamma|V|}$.

