
A Full Derandomization of Schöning’s k-SAT Algoritmh
by Robin A. Moser and Dominik Scheder

presented by Dušan Knop

Promise Ball-k-SAT Given a k-CNF formula ϕ over n variables, an assignment a, a
natural number r, and the promise that Br(a) contains a satisfying assignment. Find any
satisfying assignment to ϕ.

Schöning’s Algorithm The algorithm is very simple – consider a probabilistic procedure
with k-CNF formula on input that guesses an initial assignment a ∈ {0, 1}n, uniformly at
random. Then it repeats 3n times let C be a clause unsatisfied by actual assignment and pick
one of its literals in the clause at random and flip its value in the current assignment.

Suppose we have a satisfiable formula and fix some satisfying assignment a∗. We want to
estimate the probability p that the algorithm finds a∗ (or other satisfying assignment). Note
that Hamming distance to a∗ is important for analysis of the procedure. If C is an unsatisfied
clause then there is at least one literal (out of at most k) that decreases Hamming distance to
a∗ – so from state with distance j transfers to state j − 1 with probability at least 1/k (and
to j + 1 with probability at most (k − 1)/k). Procedure starts Markov chain and terminates
after at most 3n steps.

Given that the process has initially transfered into state j we calculate the probability gj
that the process reaches the absorbing state 0. We consider the case that the process takes
i ≤ j steps in the ”wrong” direction (then i+ j steps must be done in the ”right” direction).
Please observe the similarity with counting number of paths in rectangular grid – using ballot
theorem it is

(
j+2i
i

)
· j
j+2i .

gj ≥
1

3

j∑
i=0

(
j + 2i

i

)(
k − 1

k

)i(1

k

)i+j
≥

≥

[(
1 + 2α

α

)α(1 + 2α

1 + α

)1+α(k − 1

k

)α(1

k

)1+α
]j
≥
(

1

k − 1

)j
Using this result we can calculate the probability of success of the procedure p:

p ≥
(

1

2

)n n∑
j=0

(
n

j

)(
1

k − 1

)j
=

(
1

2

(
1 +

1

k − 1

))n
.

Notice that we needed to consider random walks up to length j + 2i ≤ n+ 2n = 3n only.

Lemma 1 (Dantsin et al.). If algorithm A solves Promise Ball-k-SAT in time O∗(αr), then
there is algorithm solving k-SAT in time O∗((2α

α+1)n). Furthermore this algorithm is deter-
ministic if A is.

Ingredient: k-ary Covering Codes Let t ∈ N. A set C ⊆ {1, . . . , k}t is called a code of

covering radius r if ∪w∈CB(k)
r = {1, . . . , k}.

Lemma 2. For any t, k ∈ N and 0 ≤ r ≤ t, there is a code C ⊆ {1, . . . , k}t of covering radius

r such that |C| ≤ d t ln(k)kt

(t
r)(k−1)r

e.

We will now describe the deterministic algorithm. First it chooses a sufficiently large
constant t, depending on the ε, and computes a code C ⊆ {1, . . . , k}t of covering radius t/k.
Since k and t are constants, it can afford to compute an optimal such code. We estimate its
size: C ≤ t2(k − 1)t−2t/k. So the code C is constant sized, can be computed and stored for
further use.

First of all: Construct greedily a maximal set G of pairwise disjoint unsatisfied k-clauses
of ϕ. That is G = {C1, . . . , Cm}, the Ci are pairwise disjoint and unsatisfied by assignment a
and each unsatisfied k-clause D in ϕ shares at least one literal with some Ci.

First Case (m < t): enumerate all 2km truth assignments to the variables of G and fix
this values–note that this reduces the size of all k-clauses by 1, and so the exhaustive search
through the ball Br(a) take running time O∗((k−1)r). Since t is constant 2kmO∗((k−1)r) =
O∗((k − 1)r).

Second Case (m ≥ t): Choose t clauses from G to form H = {C1, . . . , Ct}. For w ∈
{1, . . . , k} let a[w] be the assignment obtained from a by flipping wi-th literal in clause
Ci. Consider now promised satisfying assignment a∗ with d(a, a∗) ≤ r and define w∗ as
follows: for each 1 ≤ i ≤ t, we set w∗i to j such that a∗ satisfies j-th literal in Ci–note that
d(a[w∗], a∗) ≤ r − t.

We could iterate over all w ∈ {1, . . . , k} without using the flavor of Covering Codes–but
this would yield a running time of O∗(kr). Rather we add the flavor and iterate only over
w ∈ C–by properties of C there is w′ ∈ C with d(w′, w∗) ≤ t/k (steps in bad direction).
Therefore d(a[w′], a∗) ≤ d(a, a∗) + t/k − (t− t/k) ≤ r − (t− 2t/k).

Set ∆ := (t−2k/t) and use recursion with a[w] and r−∆ for each e ∈ C–number of leaves
in recursion is at most |C|r/∆ ≤ (t2(k − 1∆))r/∆ = ((k − 1)t

2/∆)r. Since t2/∆ goes to 1 as t
grows, the above term is bounded by (k − 1 + ε) (for sufficiently large t).

Theorem 1. For every ε > 0, there exists a deterministic algorithm which solves the Promise
Ball-k-SAT problem in time O∗((k − 1 + ε)r).

General CSP We will use a k-SAT oracle (just presented) and clever reduction to reduce
general CSP to k-SAT. Thus prooving the following:

Theorem 2. There exists a deterministic algorithm having running time O∗((d/2)n) which
takes any (d,≤ k)-CSP F over n variables and produces l = O∗((d/2)n) Boolean k-CNF
formulas {ϕi}1≤i≤l such that F is satisfiable if and only if there exists i such that ϕi is
satisfiable.

Corollary 1. For every ε > 0, there is a deterministic algorithm solving (d,≤ k)-CSP in

time O ∗ ((d(k−1)
k + ε)n).

