A Full Derandomization of Schöning's k-SAT Algoritmh

by Robin A. Moser and Dominik Scheder
presented by Dušan Knop

Promise Ball- k-SAT Given a k-CNF formula φ over n variables, an assignment a, a natural number r, and the promise that $B_{r}(a)$ contains a satisfying assignment. Find any satisfying assignment to φ.

Schöning's Algorithm The algorithm is very simple - consider a probabilistic procedure with k-CNF formula on input that guesses an initial assignment $a \in\{0,1\}^{n}$, uniformly at random. Then it repeats $3 n$ times let C be a clause unsatisfied by actual assignment and pick one of its literals in the clause at random and flip its value in the current assignment.

Suppose we have a satisfiable formula and fix some satisfying assignment a^{*}. We want to estimate the probability p that the algorithm finds a^{*} (or other satisfying assignment). Note that Hamming distance to a^{*} is important for analysis of the procedure. If C is an unsatisfied clause then there is at least one literal (out of at most k) that decreases Hamming distance to a^{*} - so from state with distance j transfers to state $j-1$ with probability at least $1 / k$ (and to $j+1$ with probability at most $(k-1) / k)$. Procedure starts Markov chain and terminates after at most $3 n$ steps.

Given that the process has initially transfered into state j we calculate the probability g_{j} that the process reaches the absorbing state 0 . We consider the case that the process takes $i \leq j$ steps in the "wrong" direction (then $i+j$ steps must be done in the "right" direction). Please observe the similarity with counting number of paths in rectangular grid - using ballot theorem it is $\binom{j+2 i}{i} \cdot \frac{j}{j+2 i}$.

$$
\begin{aligned}
g_{j} & \geq \frac{1}{3} \sum_{i=0}^{j}\binom{j+2 i}{i}\left(\frac{k-1}{k}\right)^{i}\left(\frac{1}{k}\right)^{i+j} \geq \\
& \geq\left[\left(\frac{1+2 \alpha}{\alpha}\right)^{\alpha}\left(\frac{1+2 \alpha}{1+\alpha}\right)^{1+\alpha}\left(\frac{k-1}{k}\right)^{\alpha}\left(\frac{1}{k}\right)^{1+\alpha}\right]^{j} \geq\left(\frac{1}{k-1}\right)^{j}
\end{aligned}
$$

Using this result we can calculate the probability of success of the procedure p :

$$
p \geq\left(\frac{1}{2}\right)^{n} \sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{k-1}\right)^{j}=\left(\frac{1}{2}\left(1+\frac{1}{k-1}\right)\right)^{n}
$$

Notice that we needed to consider random walks up to length $j+2 i \leq n+2 n=3 n$ only.
Lemma 1 (Dantsin et al.). If algorithm A solves Promise Ball-k-SAT in time $O^{*}\left(\alpha^{r}\right)$, then there is algorithm solving k-SAT in time $O^{*}\left(\left(\frac{2 \alpha}{\alpha+1}\right)^{n}\right)$. Furthermore this algorithm is deterministic if A is.

Ingredient: k-ary Covering Codes Let $t \in \mathbb{N}$. A set $\mathcal{C} \subseteq\{1, \ldots, k\}^{t}$ is called a code of covering radius r if $\cup_{w \in \mathcal{C}} B_{r}^{(k)}=\{1, \ldots, k\}$.
Lemma 2. For any $t, k \in \mathbb{N}$ and $0 \leq r \leq t$, there is a code $\mathcal{C} \subseteq\{1, \ldots, k\}^{t}$ of covering radius r such that $|\mathcal{C}| \leq\left\lceil\frac{t \ln (k) k^{t}}{\binom{t}{r}(k-1)^{r}}\right\rceil$.

We will now describe the deterministic algorithm. First it chooses a sufficiently large constant t, depending on the ε, and computes a code $\mathcal{C} \subseteq\{1, \ldots, k\}^{t}$ of covering radius t / k. Since k and t are constants, it can afford to compute an optimal such code. We estimate its size: $\mathcal{C} \leq t^{2}(k-1)^{t-2 t / k}$. So the code \mathcal{C} is constant sized, can be computed and stored for further use.

First of all: Construct greedily a maximal set G of pairwise disjoint unsatisfied k-clauses of φ. That is $G=\left\{C_{1}, \ldots, C_{m}\right\}$, the C_{i} are pairwise disjoint and unsatisfied by assignment a and each unsatisfied k-clause D in φ shares at least one literal with some C_{i}.

First Case $(m<t)$: enumerate all $2^{k m}$ truth assignments to the variables of G and fix this values-note that this reduces the size of all k-clauses by 1 , and so the exhaustive search through the ball $B_{r}(a)$ take running time $O^{*}\left((k-1)^{r}\right)$. Since t is constant $2^{k m} O^{*}\left((k-1)^{r}\right)=$ $O^{*}\left((k-1)^{r}\right)$.

Second Case $(m \geq t)$: Choose t clauses from G to form $H=\left\{C_{1}, \ldots, C_{t}\right\}$. For $w \in$ $\{1, \ldots, k\}$ let $a[w]$ be the assignment obtained from a by flipping w_{i}-th literal in clause C_{i}. Consider now promised satisfying assignment a^{*} with $d\left(a, a^{*}\right) \leq r$ and define w^{*} as follows: for each $1 \leq i \leq t$, we set w_{i}^{*} to j such that a^{*} satisfies j-th literal in C_{i}-note that $d\left(a\left[w^{*}\right], a^{*}\right) \leq r-t$.

We could iterate over all $w \in\{1, \ldots, k\}$ without using the flavor of Covering Codes-but this would yield a running time of $O^{*}\left(k^{r}\right)$. Rather we add the flavor and iterate only over $w \in \mathcal{C}$-by properties of \mathcal{C} there is $w^{\prime} \in \mathcal{C}$ with $d\left(w^{\prime}, w^{*}\right) \leq t / k$ (steps in bad direction). Therefore $d\left(a\left[w^{\prime}\right], a^{*}\right) \leq d\left(a, a^{*}\right)+t / k-(t-t / k) \leq r-(t-2 t / k)$.

Set $\Delta:=(t-2 k / t)$ and use recursion with $a[w]$ and $r-\Delta$ for each $e \in \mathcal{C}$-number of leaves in recursion is at most $|\mathcal{C}|^{r / \Delta} \leq\left(t^{2}\left(k-1^{\Delta}\right)\right)^{r / \Delta}=\left((k-1)^{t^{2} / \Delta}\right)^{r}$. Since t^{2} / Δ goes to 1 as t grows, the above term is bounded by $(k-1+\varepsilon)$ (for sufficiently large t).

Theorem 1. For every $\varepsilon>0$, there exists a deterministic algorithm which solves the Promise Ball-k-SAT problem in time $O^{*}\left((k-1+\varepsilon)^{r}\right)$.

General CSP We will use a k-SAT oracle (just presented) and clever reduction to reduce general CSP to k-SAT. Thus prooving the following:

Theorem 2. There exists a deterministic algorithm having running time $O^{*}\left((d / 2)^{n}\right)$ which takes any $(d, \leq k)$-CSP F over n variables and produces $l=O^{*}\left((d / 2)^{n}\right)$ Boolean k-CNF formulas $\left\{\varphi_{i}\right\}_{1 \leq i \leq l}$ such that F is satisfiable if and only if there exists i such that φ_{i} is satisfiable.

Corollary 1. For every $\varepsilon>0$, there is a deterministic algorithm solving ($d, \leq k$)-CSP in time $O *\left(\left(\frac{d(k-1)}{k}+\varepsilon\right)^{n}\right)$.

