A Full Derandomization of Schöning's k-SAT Algoritmh

by Robin A. Moser and Dominik Scheder presented by Dušan Knop

Promise Ball-*k***-SAT** Given a *k*-CNF formula φ over *n* variables, an assignment *a*, a natural number *r*, and the promise that $B_r(a)$ contains a satisfying assignment. Find any satisfying assignment to φ .

Schöning's Algorithm The algorithm is very simple – consider a probabilistic procedure with k-CNF formula on input that guesses an initial assignment $a \in \{0, 1\}^n$, uniformly at random. Then it repeats 3n times let C be a clause unsatisfied by actual assignment and pick one of its literals in the clause at random and flip its value in the current assignment.

Suppose we have a satisfiable formula and fix some satisfying assignment a^* . We want to estimate the probability p that the algorithm finds a^* (or other satisfying assignment). Note that Hamming distance to a^* is important for analysis of the procedure. If C is an unsatisfied clause then there is at least one literal (out of at most k) that decreases Hamming distance to a^* – so from state with distance j transfers to state j - 1 with probability at least 1/k (and to j + 1 with probability at most (k - 1)/k). Procedure starts Markov chain and terminates after at most 3n steps.

Given that the process has initially transfered into state j we calculate the probability g_j that the process reaches the absorbing state 0. We consider the case that the process takes $i \leq j$ steps in the "wrong" direction (then i + j steps must be done in the "right" direction). Please observe the similarity with counting number of paths in rectangular grid – using ballot theorem it is $\binom{j+2i}{i} \cdot \frac{j}{j+2i}$.

$$g_{j} \geq \frac{1}{3} \sum_{i=0}^{j} {\binom{j+2i}{i}} \left(\frac{k-1}{k}\right)^{i} \left(\frac{1}{k}\right)^{i+j} \geq \\ \geq \left[\left(\frac{1+2\alpha}{\alpha}\right)^{\alpha} \left(\frac{1+2\alpha}{1+\alpha}\right)^{1+\alpha} \left(\frac{k-1}{k}\right)^{\alpha} \left(\frac{1}{k}\right)^{1+\alpha} \right]^{j} \geq \left(\frac{1}{k-1}\right)^{j}$$

Using this result we can calculate the probability of success of the procedure *p*:

$$p \ge \left(\frac{1}{2}\right)^n \sum_{j=0}^n \binom{n}{j} \left(\frac{1}{k-1}\right)^j = \left(\frac{1}{2}\left(1+\frac{1}{k-1}\right)\right)^n.$$

Notice that we needed to consider random walks up to length $j + 2i \le n + 2n = 3n$ only.

Lemma 1 (Dantsin et al.). If algorithm A solves Promise Ball-k-SAT in time $O^*(\alpha^r)$, then there is algorithm solving k-SAT in time $O^*((\frac{2\alpha}{\alpha+1})^n)$. Furthermore this algorithm is deterministic if A is.

Ingredient: k-ary Covering Codes Let $t \in \mathbb{N}$. A set $C \subseteq \{1, \ldots, k\}^t$ is called a code of covering radius r if $\bigcup_{w \in C} B_r^{(k)} = \{1, \ldots, k\}$.

Lemma 2. For any $t, k \in \mathbb{N}$ and $0 \le r \le t$, there is a code $\mathcal{C} \subseteq \{1, \ldots, k\}^t$ of covering radius r such that $|\mathcal{C}| \le \lceil \frac{t \ln(k)k^t}{\binom{t}{r}(k-1)^r} \rceil$.

We will now describe the deterministic algorithm. First it chooses a sufficiently large constant t, depending on the ε , and computes a code $\mathcal{C} \subseteq \{1, \ldots, k\}^t$ of covering radius t/k. Since k and t are constants, it can afford to compute an optimal such code. We estimate its size: $\mathcal{C} \leq t^2(k-1)^{t-2t/k}$. So the code \mathcal{C} is constant sized, can be computed and stored for further use.

First of all: Construct greedily a maximal set G of pairwise disjoint unsatisfied k-clauses of φ . That is $G = \{C_1, \ldots, C_m\}$, the C_i are pairwise disjoint and unsatisfied by assignment a and each unsatisfied k-clause D in φ shares at least one literal with some C_i .

First Case (m < t): enumerate all 2^{km} truth assignments to the variables of G and fix this values-note that this reduces the size of all k-clauses by 1, and so the exhaustive search through the ball $B_r(a)$ take running time $O^*((k-1)^r)$. Since t is constant $2^{km}O^*((k-1)^r) = O^*((k-1)^r)$.

Second Case $(m \ge t)$: Choose t clauses from G to form $H = \{C_1, \ldots, C_t\}$. For $w \in \{1, \ldots, k\}$ let a[w] be the assignment obtained from a by flipping w_i -th literal in clause C_i . Consider now promised satisfying assignment a^* with $d(a, a^*) \le r$ and define w^* as follows: for each $1 \le i \le t$, we set w_i^* to j such that a^* satisfies j-th literal in C_i -note that $d(a[w^*], a^*) \le r - t$.

We could iterate over all $w \in \{1, \ldots, k\}$ without using the flavor of Covering Codes-but this would yield a running time of $O^*(k^r)$. Rather we add the flavor and iterate only over $w \in C$ -by properties of C there is $w' \in C$ with $d(w', w^*) \leq t/k$ (steps in bad direction). Therefore $d(a[w'], a^*) \leq d(a, a^*) + t/k - (t - t/k) \leq r - (t - 2t/k)$.

Set $\Delta := (t - 2k/t)$ and use recursion with a[w] and $r - \Delta$ for each $e \in \mathcal{C}$ -number of leaves in recursion is at most $|\mathcal{C}|^{r/\Delta} \leq (t^2(k-1^{\Delta}))^{r/\Delta} = ((k-1)^{t^2/\Delta})^r$. Since t^2/Δ goes to 1 as t grows, the above term is bounded by $(k-1+\varepsilon)$ (for sufficiently large t).

Theorem 1. For every $\varepsilon > 0$, there exists a deterministic algorithm which solves the Promise Ball-k-SAT problem in time $O^*((k-1+\varepsilon)^r)$.

General CSP We will use a k-SAT oracle (just presented) and clever reduction to reduce general CSP to k-SAT. Thus prooving the following:

Theorem 2. There exists a deterministic algorithm having running time $O^*((d/2)^n)$ which takes any $(d, \leq k)$ -CSP F over n variables and produces $l = O^*((d/2)^n)$ Boolean k-CNF formulas $\{\varphi_i\}_{1\leq i\leq l}$ such that F is satisfiable if and only if there exists i such that φ_i is satisfiable.

Corollary 1. For every $\varepsilon > 0$, there is a deterministic algorithm solving $(d, \leq k)$ -CSP in time $O * ((\frac{d(k-1)}{k} + \varepsilon)^n)$.