A Full Derandomization of Schoning’s k-SAT Algoritmh
by Robin A. Moser and Dominik Scheder
presented by Dusan Knop

Promise Ball-k-SAT Given a k-CNF formula ¢ over n variables, an assignment a, a
natural number r, and the promise that B,.(a) contains a satisfying assignment. Find any
satisfying assignment to .

Schoning’s Algorithm The algorithm is very simple — consider a probabilistic procedure
with k-CNF formula on input that guesses an initial assignment a € {0,1}", uniformly at
random. Then it repeats 3n times let C be a clause unsatisfied by actual assignment and pick
one of its literals in the clause at random and flip its value in the current assignment.

Suppose we have a satisfiable formula and fix some satisfying assignment a*. We want to
estimate the probability p that the algorithm finds a* (or other satisfying assignment). Note
that Hamming distance to a* is important for analysis of the procedure. If C' is an unsatisfied
clause then there is at least one literal (out of at most k) that decreases Hamming distance to
a* — so from state with distance j transfers to state j — 1 with probability at least 1/k (and
to j + 1 with probability at most (k — 1)/k). Procedure starts Markov chain and terminates
after at most 3n steps.

Given that the process has initially transfered into state j we calculate the probability g;
that the process reaches the absorbing state 0. We consider the case that the process takes
i < j steps in the "wrong” direction (then i + j steps must be done in the ”right” direction).
Please observe the similarity with counting number of paths in rectangular grid — using ballot

theorem it is (]ngl) . jJﬁzi.

ECHEYE
() ()™ (2 () = ()

Using this result we can calculate the probability of success of the procedure p:

= (VEC) () (G0

Notice that we needed to consider random walks up to length j + 2i < n 4+ 2n = 3n only.

v

9j

AV

Lemma 1 (Dantsin et al.). If algorithm A solves Promise Ball-k-SAT in time O*(a™), then

there is algorithm solving k-SAT in time O*((f—i‘l)”) Furthermore this algorithm is deter-

ministic if A is.

Ingredient: k-ary Covering Codes Lett € N. A set C C {1,...,k} is called a code of
covering radius r if UwecBﬁk) ={1,...,k}.

Lemma 2. For anyt,k € N and 0 < r <t, there is a code C C {1,...,k}' of covering radius

r such that |C| < [(ttl)n(’(cik_)]f;ﬂ

We will now describe the deterministic algorithm. First it chooses a sufficiently large
constant ¢, depending on the ¢, and computes a code C C {1,...,k}! of covering radius t/k.
Since k and ¢ are constants, it can afford to compute an optimal such code. We estimate its
size: C < t2(k — 1)!2/k. So the code C is constant sized, can be computed and stored for
further use.

First of all: Construct greedily a maximal set G of pairwise disjoint unsatisfied k-clauses
of . That is G = {C1,...,Cy,}, the C; are pairwise disjoint and unsatisfied by assignment a
and each unsatisfied k-clause D in ¢ shares at least one literal with some C;.

First Case (m < t): enumerate all 2¥ truth assignments to the variables of G' and fix
this values—note that this reduces the size of all k-clauses by 1, and so the exhaustive search
through the ball B,(a) take running time O*((k —1)"). Since ¢ is constant 2¥™O*((k —1)") =
O*((k—1)").

Second Case (m > t): Choose t clauses from G to form H = {Cy,...,C:}. For w €
{1,...,k} let afw] be the assignment obtained from a by flipping w;-th literal in clause
C;. Consider now promised satisfying assignment a* with d(a,a*) < r and define w* as
follows: for each 1 <1 <'t, we set w; to j such that a* satisfies j-th literal in C;-note that
d(alw*],a*) <r—t.

We could iterate over all w € {1,...,k} without using the flavor of Covering Codes—but
this would yield a running time of O*(k"). Rather we add the flavor and iterate only over
w € C-by properties of C there is w' € C with d(w',w*) < t/k (steps in bad direction).
Therefore d(a[w'],a*) < d(a,a*) +t/k — (t —t/k) <r— (t — 2t/k).

Set A := (t—2k/t) and use recursion with a[w] and r — A for each e € C-number of leaves
in recursion is at most [C|"/A < (t2(k — 128))/2 = ((k — 1)®*/2)". Since t2/A goes to 1 as ¢
grows, the above term is bounded by (k — 1 + ¢) (for sufficiently large t).

Theorem 1. For every e > 0, there exists a deterministic algorithm which solves the Promise
Ball-k-SAT problem in time O*((k —1+¢)").

General CSP We will use a k-SAT oracle (just presented) and clever reduction to reduce
general CSP to k-SAT. Thus prooving the following:

Theorem 2. There exists a deterministic algorithm having running time O*((d/2)™) which
takes any (d,< k)-CSP F over n variables and produces | = O*((d/2)") Boolean k-CNF
formulas {@i}1<i<i such that F is satisfiable if and only if there exists i such that g; is
satisfiable.

Corollary 1. For every e > 0, there is a deterministic algorithm solving (d, < k)-CSP in

time O x ({51 4 gymy.

