Long Cycles in Subgraphs of (Pseudo)random Directed Graphs

Ido Ben-Eliezer, Michael Krivelevich, Benny Sudakov
presented by Tomás Valla

January 5, 2012

1 Definitions of the model

- Given a monotone increasing property P, the global resilience of a graph G with respect to P is the maximal integer R such that for every syubset $E_{0} \subset E(G)$ of $\left|E_{0}\right|=R$ edges, the graph $G-E_{0}$ still possesses P. Analogously for a monotone decreasing property P.
- We consider directed graphs on n vertices, antiparallel edges are allowed.
- Graph (V, E) has edge density p if $|E|=p n^{2}$.
- The probability distribution $D(n, p)$: n vertices, for every distinct vertices x, y there is and edge from x to y with probability p, and independently from y to x with probability p.
- Directed graph G is (p, r)-pseudorandom if it has edge density p and for every disjoint $A, B \subseteq V(G),|A|=|B|$, the number of edges from A to B (denoted by $\left.e_{G}(A, B)\right)$ satisfies

$$
\left|e_{G}(A, B)-p\right| A||B|| \leq r|A| \sqrt{p n}
$$

Lemma 1 For every constant $c>0$ there is a constant $C>0$ such that for $p \geq C / n$, a random directed graph $G \in D(n, p)$ is (p, c)-pseudorandom with high probability.

2 Long cycles in graphs

Theorem 1 (Woodall) Let $3 \leq \ell \leq n$. Every graph G on n vertices satisfying

$$
e(G) \geq\left\lceil\frac{n-1}{\ell-2}\right\rceil \cdot\binom{\ell-1}{2}+\binom{r+1}{2}+1
$$

where $r=(n-1) \bmod (\ell-2)$, has a cycle of length at least ℓ.
The bound is best possible.
For a given $0 \leq \alpha<1$, define

$$
w(\alpha)=1-(1-\alpha)\left\lfloor(1-\alpha)^{-1}\right\rfloor
$$

Theorem 2 (Dellamonica et al.) Let $\alpha>0$. For every $\beta>0$ there is n_{0} such that for every graph G on $n>n_{0}$ vertices satisfying

$$
|E(G)| \geq\binom{ n}{2} \cdot(1-(1-w(\alpha))(\alpha+w(\alpha))+\beta)
$$

has a cycle of length at least $(1-\alpha) n$.
Theorem 3 Fix $0<\gamma<1 / 2$ and let $G=(V, E)$ be a (p, r)-pseudorandom directed graph on n vertices, where $r \leq \mu \sqrt{n p}$ and $\mu(\gamma)>0$ is a sufficiently small constant that depends only on γ and n is sufficiently large. Let G^{\prime} be a subgraph of G with at least $(1 / 2+\gamma)|E|$ edges. Then G^{\prime} contains a directed cycle of length at least $(1-\alpha-o(1)) n$, where α satisfies

$$
2 \gamma=1-(1-w(\alpha))(\alpha+w(\alpha))
$$

Corollary 1 For every $\gamma>0$ there is a constant $c_{1}(\gamma)>0$ such that the following holds. Let G be a (p, r)-pseudorandom graph on n vertices, $r \leq \mu \sqrt{n p}$, where $\mu(\gamma)>0$ is some sufficiently small constant that depends only on γ and n is sufficiently large. Let G^{\prime} be a subgraph of G with at least $(1 / 2+\gamma)|E(G)|$ edges. Then G^{\prime} contains a directed cycle of length at least $c_{1} n$.

Theorem 4 Fix $0<\gamma<1 / 2$ and let G be a (p, r)-pseudorandom directed graph on n vertices, where $r=O(\sqrt{n p})$ and $p n \rightarrow \infty$. There is a subgraph G^{\prime} with $(1 / 2+\gamma)|E|$ edges that does not contain any directed cycle of length at least $(1-\alpha+o(1)) n$, where α satisfies

$$
2 \gamma=1-(1-w(\alpha))(\alpha+w(\alpha))
$$

3 The Regularity Lemma

- For a pair of disjoint sets of vertices U, W, let $E_{G}(U, W)$ be the set of edges directed from U to W, and let $e_{G}(U, W)=\left|E_{G}(U, W)\right|$.
- Graph G is (δ, D, p)-bounded if for any two disjoint sets U, W such that $|U|,|W| \geq \delta|V|$ we have

$$
e_{G}(U, W) \leq D p|U||W|
$$

- The edge density from a set U to W is defined by $\frac{e(U, W)}{|U \| W\rangle}$.
- Two sets U, W span a bipartite directed graph of bi-density p if it has edge density at least p in both directions.
- The directed p-density from U to W is

$$
d_{G, p}(U, W)=\frac{e_{G}(U, W)}{p|U||W|}
$$

- For $0<\delta \leq 1$, a pair (U, W) is (δ, p)-regular in a digraph G if for every $U^{\prime} \subseteq U$ and $W^{\prime} \subseteq W$ such that $\left|U^{\prime}\right| \geq \delta|U|$ and $\left|W^{\prime}\right| \geq \delta|W|$ we have both

$$
\left|d_{G, p}(U, W)-d_{G, p}\left(U^{\prime}, W^{\prime}\right)\right|<\delta
$$

and

$$
\left|d_{G, p}(W, U)-d_{G, p}\left(W^{\prime}, U^{\prime}\right)\right|<\delta
$$

- A partition $\left\{V_{0}, V_{1}, \ldots, V_{k}\right\}$ of V is (δ, k, p)-regular if the following properties hold:

1. $\left|V_{0}\right| \leq \delta|V|$.
2. $\left|V_{i}\right|=\left|V_{j}\right|$ for all $1 \leq i<j \leq k$.
3. At least $(1-\delta)\binom{k}{2}$ of the pairs $\left(V_{i}, V_{j}\right), 1 \leq i<j \leq k$, are (δ, p)-regular.

Lemma 2 (Regularity Lemma) For any real $\delta>0$, any integer $k_{0} \geq 1$ and any real $D>1$, there exist constants $\eta=\eta\left(\delta, k_{0}, D\right)$ and $K=K\left(\delta, k_{0}, D\right) \geq k_{0}$ such that for any $0<p(n) \leq 1$, any (η, D, p)-bounded directed graph G admits $a(\delta, k, p)$-regular partition for some $k_{0} \leq k \leq K$.

4 Regular pair contains a long path

Lemma 3 Let (U, W) be a (δ, p)-regular pair for $|U|=|W|$ with bi-density at least $2 \delta p$, where $p>0$. Then for every two sets $U^{\prime} \subseteq U$ and $W^{\prime} \subseteq W$ such that $\left|U^{\prime}\right| \geq \delta|U|$ and $\left|W^{\prime}\right| \geq \delta|W|$ there is a directed edge from U^{\prime} to W^{\prime}.

Lemma 4 Let $H=\left(V_{1}, V_{2}, E\right)$, where $\left|V_{1}\right|=\left|V_{2}\right|=t$, be a directed bipartite graph that satisfies the following property: for every two sets $A \subseteq V_{1}, B \subseteq V_{2}$ of size k, there is at least one edge from B to A. Then H contains a directed path of length $2 t-4 k+3$.

Corollary 2 Let (U, W) be a (δ, p)-regular pair with bi-density at least $2 \delta p$ and $|U|=|W|=t$, $p>0$. Then the bipartite directed graph between U and W contains a directed path of length $(1-2 \delta) 2 t+2$ that starts at U.

