Holographic algorithms

Leslie Valiant
Presented by: Pavel Rytír

January 21, 2012

1 Definitions

With a graph G we associate the perfect matching polynomial $\operatorname{PerfMatch}(G)$ over $n(n-1) / 2$ variables $\left\{x_{i, j} \mid 1 \leq i<j \leq n\right\}$ as follows:

$$
\operatorname{PerfMatch}(G)=\sum_{E^{\prime}} \prod_{(i, j) \in E^{\prime}} x_{i, j}
$$

where the summation is over all perfect matchings E^{\prime} of G.
A planar matchgate Γ is a triple (G, X, Y) where G is a planar embedding of a planar graph (V, E, W) where $X \subseteq V$ is a set of input nodes, $Y \subseteq V$ is a set of output nodes, and where X, Y are disjoint.

Further, as one proceeds anticlockwise around the outer face starting from one point one encounters first the input nodes labeled $1,2, \ldots,|X|$ and then the output nodes $|Y|, \ldots, 2,1$ in that order. The arity of the matchgate is $|X|+|Y|$.

For $Z \subseteq X \cup Y$ we define the standard signature of Γ with respect to Z to be PerfMatch $(G-$ $Z)$, where $G-Z$ is the graph obtained by removing from G the node set Z and all edges that are incident to Z.

Further we define the standard signature of Γ to be the $2^{|X|} \times 2^{|Y|}$ matrix $u(\Gamma)$ whose elements are the standard signatures of Γ with respect to Z for the $2^{|X|} 2^{|Y|}$ choices of Z. The labeling of the matrix is as follows: Suppose that X and Y have the labeling described, i.e., the nodes are labeled $1,2, \ldots,|X|$ and $|Y|, \ldots, 2,1$ in anti-clockwise order. Then each choice of Z corresponds to a subset from each of these labeled sets. If each node present in Z is regarded as a 1 , and each node absent as a 0 , then we have two binary strings of length $|X|,|Y|$, respectively, where the nodes labeled 1 correspond to the leftmost binary bit. Suppose that i, j are the numbers represented by these strings in binary. Then the entry corresponding to Z will be the one in row i and column j in the signature matrix $u(\Gamma)$.

A basis of size k is a set of distinct nonzero vectors each of length 2^{k} with entries from a field F. Often we will have just two basis vectors that represent 0 and 1 , respectively, and in that case we shall call them n and p. In this paper all bases will be of size $k=1$, so that $n=\left(n_{0}, n_{1}\right)$ and $p=\left(p_{0}, p_{1}\right)$. The basis $b_{0}=[n, p]=[(1,0),(0,1)]$ we call the standard basis. In general, the vectors in a basis do not need to be independent

$$
b_{1}=[n, p]=[(-1,1),(1,0)]
$$

If we have two vectors q, r, of length l, m, respectively, then we shall denote the tensor product $s=q \otimes r$ to be the vector s of length $l m$ in which $s_{i m+j}=q_{i} r_{j}$ for $0 \leq i<l$.

We say that a matchgate is a generator if it has zero input nodes and nonzero output nodes, and a recognizer if it has zero output nodes and nonzero input nodes.

Let $b=\{n, p\}$ be a basis and let G be a generator of arity k and let

$$
u(G)=\sum_{x=x_{1} \otimes \cdots \otimes x_{k} \in\{n, p\}^{k}} \alpha_{x} x,
$$

then the signature of generator G with respect to basis b is the vector

$$
\left(\alpha_{x}\right)_{x=x_{1} \otimes \cdots \otimes x_{k} \in\{n, p\}^{k}} .
$$

Let $x \in\{n, p\}^{k}$ we denote by $\operatorname{valG}(G, x)$ the signature element α_{x}.
Let R be a recognizer and let x be a vector then $\operatorname{valR}(G, x):=u(g) x$ (scalar product of standard signature of G and x).

We define a matchgrid Ω over a basis b to be a weighted undirected planar graph G that consists of the disjoint union of a set of g generator matchgates B_{1}, \ldots, B_{g}, r recognizer matchgates A_{1}, \ldots, A_{r}, and f connecting edges C_{1}, \ldots, C_{f} where each C_{i} edge has weight one and joins an output node in a generator matchgate with an input node of a recognizer matchgate, such that every input and output node in every constituent matchgate has exactly one such incident connecting edge.

$$
\operatorname{Holant}(\Omega)=\sum_{x \in b^{f}}\left[\prod_{1 \leq j \leq g} \operatorname{valG}\left(B_{j}, x_{j}\right)\right]\left[\prod_{1 \leq i \leq g} \operatorname{valR}\left(A_{i}, x_{i}\right)\right]
$$

Theorem 1.1. For any matchgrid Ω over any basis b if Ω has weighted graph G then

$$
\operatorname{Holant}(\Omega)=\operatorname{PerfMatch}(G) .
$$

