# Finitely forcible graphons 

L.Lovász, B. Szegedy

presented by Tereza Klimošová

## Graphons and forcing families

Definition 1. Let $\mathcal{W}$ denote the set of bounded symmetric measurable functions of the form $W:[0,1]^{2} \rightarrow \mathbb{R}$, and let $\mathcal{W}_{0} \subset \mathcal{W}$ consist of those with range in $[0,1]$. The elements of $\mathcal{W}$ are called graphons.

Definition 2. The density $t(F, G)$ of a simple graph $F$ in a simple graph $G$ is the probability that a random map $V(F) \rightarrow V(G)$ is a graph homomorphism.
The subgraph density of a simple graph $F$ in a graphon $W$ is

$$
t(G, W)=\int_{[0,1]^{V}} \prod_{i j \in E} W\left(x_{i}, x_{j}\right) \prod_{i \in V} d x_{i}
$$

Definition 3. Two graphons are weakly isomorphic if they have the same simple subgraph densities. We denote by $[W]$ the set of graphons weakly isomorphic to $W$.

Theorem 1. Two graphons $U$ and $W$ are weakly isomorphic if and only if there are measure preserving maps $\varphi, \psi:[0,1] \rightarrow[0,1]$ such that $U^{\varphi}=W^{\psi}$, where $U^{\varphi}(x, y):=U(\varphi(x), \varphi(y))$.

Definition 4. Let $F_{1}, \ldots, F_{k}$ be simple graphs and $a_{1}, \ldots, a_{k}$ be real numbers in $[0,1]$. We say that the set $\left\{\left(F_{i}, a_{i}\right) \mid i=1, \ldots, k\right\}$ is a forcing family if there is a sequence of simple graphs $\left\{G_{n}\right\}_{n=1}^{\infty}$ with $\lim _{n \rightarrow \infty} t\left(F_{i}, G_{n}\right)=a_{i}$ for every $i=1, \ldots, k$, and for every such graph sequence $\lim _{n \rightarrow \infty} t\left(F, G_{n}\right)$ exists for every simple graph $F$
Let $\mathcal{A} \subseteq \mathcal{W}$. Let $F_{1}, \ldots, F_{k}$ be simple graphs and $a_{1}, \ldots, a_{k}$ be real numbers in $[0,1]$. We say that the set $\left\{\left(F_{i}, a_{i}\right) \mid i=1, \ldots, k\right\}$ is a forcing family in $\mathcal{A}$ if there is a unique (up to weak isomorphism) graphon $W \in \mathcal{A}$, such that $t\left(F_{i}, W\right)=a_{i}$ for every $i=1, \ldots, k$. In this case we say that $W$ is finitely forcible in $\mathcal{A}$ and the family $\left\{F_{i} \mid i=1, \ldots, k\right\}$ is a forcing family for $W$ in $\mathcal{A}$.

Definition 5. A quantum graph is a formal linear combination with real coefficients of multigraphs. Multigraphs that occur with nonzero coefficients are called its constituents. A quantum graph is simple if every its constituent is simple. We denote a linear space of simple quantum graphs by $\mathcal{Q}$.

## The adjoint of an operator

Definition 6. Let $\mathbf{F}: \mathcal{W} \rightarrow \mathcal{W}$ be an operator preserving weak isomorphism and let $\mathbf{F}^{*}: \mathcal{Q} \rightarrow \mathcal{Q}$ be a linear map. We say that the map $\mathbf{F}^{*}$ is an adjoint of $\mathbf{F}$ if

$$
t(g, \mathbf{F}(W))=t\left(\mathbf{F}^{*}(g), W\right)
$$

for every $g \in \mathcal{Q}$ and $W \in \mathcal{W}$. We denote the set of functionals which have an adjoint by $\mathcal{D}$.
Lemma 2. Let $W \in \mathcal{W}$ be finitely forcible in $\mathcal{W}$, let $\mathbf{F} \in \mathcal{D}$ and assume that $\mathbf{F}^{-1}([W])$ is finite (up to weak isomorphism). Then every element in $\mathbf{F}^{-1}([W])$ is finitely forcible in $\mathcal{W}$.

Example 1. Let $\mathbf{F}(W)=\alpha W$ for some fixed $\alpha \in \mathbb{R}$. Then $\mathbf{F}^{*}$ for simple graphs is

$$
\mathbf{F}^{*}(G)=\alpha^{|E(G)|} G
$$

Example 2. Let $\mathbf{F}(W)=W+\beta$ for some fixed $\beta \in \mathbb{R}$. Then $\mathbf{F}^{*}$ for simple graphs is

$$
\mathbf{F}^{*}(G)=\sum_{Z \subseteq E(G)} \beta^{|E(G) \backslash Z|}(V(G), Z) .
$$

Corollary 3. If $W \in \mathcal{W}$ is finitely forcible (in $\mathcal{W}$ ), then $\alpha W+\beta$ for $\alpha, \beta \in \mathbb{R}$ is finitely forcible.
Necessary condition for finite forcing
Definition 7. A graphon $W$ is a stepfunction if there is a partition $\left\{S_{1}, \ldots, S_{n}\right\}$ of $[0,1]$ into measurable sets such that $W$ is constant on each product set $S_{i} \times S_{j}$.
Definition 8. We say that the rank of a graphon $W$ is $r$, if $r$ is the least nonnegative integer such that there are measurable functions $w_{i}:[0,1] \rightarrow \mathbb{R}$ and reals $\lambda_{i}, i=1, \ldots, r$, such that

$$
W(x, y)=\sum_{k=1}^{r} \lambda_{k} w_{k}(x) w_{k}(y)
$$

almost everywhere. If no such integer exists, then we say that $W$ has infinite rank.
Theorem 4. If $W$ has finite rank, then for every finite list $F_{1}, \ldots F_{m}$ of simple graphs there is a stepfunction $U$ such that $t\left(F_{i}, U\right)=t\left(F_{i}, W\right)$ for every $i=1, \ldots, m$.
Corollary 5. Every finitely forcible graphon is either a stepfunction or it has infinite rank.
Corollary 6. Assume that $W \in \mathcal{W}$ can be expressed as a non-constant polynomial in $x$ and $y$. Then $W$ is not finitely forcible.

## Finitely forcible graphons

Definition 9. Suppose that edges of a graph $F$ are partitioned into two sets $E_{+}$and $E_{-}$. We call the triple $\widehat{F}=\left(V, E_{+}, E_{-}\right)$a signed graph and we define

$$
t(\widehat{F}, W)=\int_{[0,1]^{V}} \prod_{i j \in E_{+}} W\left(x_{i}, x_{j}\right) \prod_{i j \in E_{-}}\left(1-W\left(x_{i}, x_{j}\right)\right) \prod_{i \in V} d x_{i} .
$$

Definition 10. A graph $F$ with $k$ specified vertices labeled $1, \ldots, k$ and any number of unlabeled vertices is called a $k$-labeled graph. Let $V_{0}$ be a set of unlabeled vertices of $F$. For $W \in \mathcal{W}$ we define a function $t_{k}(F, W):[0,1]^{k} \rightarrow \mathbb{R}$ by

$$
t_{k}(F, W)\left(x_{1}, \ldots, x_{k}\right)=\int_{[0,1]^{V_{0}}} \prod_{i j \in E} W\left(x_{i}, x_{j}\right) \prod_{i \in V_{0}} d x_{i} .
$$

Let $\mathcal{M}_{0}$ denote the set of functions $[0,1]^{2} \rightarrow[0,1]$ that are monotone decreasing in both variables, and let $\mathcal{M}$ be the set of graphons which are weakly isomorphic to some function of $\mathcal{M}_{0}$. Let $\widehat{C}_{4}$ denote a signed 4-labeled 4-cycle, with two opposite edges signed " + "and the other two "-".
Lemma 7. Let $W \in \mathcal{W}$, then $W \in \mathcal{M}$ if and only if $t_{4}\left(\widehat{C}_{4}, W\right)=0$ almost everywhere.
Theorem 8. Let p be a real symmetric polynomial in two variables, which is monotone decreasing on $[0,1]$. Then the function $W(x, y)=\mathbf{1}_{p(x, y) \geq 0}$ is finitely forcible in $\mathcal{W}$.

