Entropy-based Bound on Dimension Reduction in L_{1}

Oded Regev

presented by Tomáš Gavenčiak

1 Embeddings

For convenience, let $[k$] denote $\{1, \ldots, k\}$ and $U(S)$ an uniform distribution over S. All log's are base 2.
Let (X, d_{X}) and (Y, d_{Y}) be (possibly finite) metric spaces. We consider metrics of shortest distances in an (undirected) graph and L_{1} metric in \mathbb{R}^{d} (denoted l_{1}^{d}).
A mapping $f: X \rightarrow Y$ of metric spaces is called an embedding with distortion $C>0$) if

$$
S d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq C S d_{X}(x, y)
$$

for some constant $S>0$ (scaling factor).

2 Main result

Theorem 1.1 (Main result)

1. (large distortion) For every N, there is an N-point subset of L_{1} such that for every $D>1$, embedding it into l_{1}^{d} with distortion D requires $d \geq N^{\Omega\left(1 / D^{2}\right)}$.
2. (small distortion) For every N, and every $\epsilon>0$, there is an N-point subset of L_{1} such that embedding it into l_{1}^{d} with distortion $1+\epsilon$ requires $d \geq$ $N^{1-O(1 / \log (1 / \epsilon))}$.

The main technical tool used in the proof is the following theorem:
Theorem 3.1. For any $k \geq 2, n \geq 1$ the following holds. Assume $f:[2 k]^{n} \rightarrow \mathbb{R}^{d}$ and $\epsilon<1 /(k-1)$ satisfy:

1. For all $x_{1}, \ldots, x_{n} \in[2 k],\left\|f\left(x_{1}, \ldots, x_{n}\right)\right\|_{1} \leq 1$
2. For all $l \in[n], x_{1}, \ldots, x_{l-1} \in[2 k]$, and $r \in[k-1]$,

$$
\begin{aligned}
\frac{1}{2 k} \| & \sum_{b=1}^{r}\left(f\left(x_{1}, \ldots, x_{l-1}, b\right)+f\left(x_{1}, \ldots, x_{l-1}, b+k\right)\right)- \\
& \sum_{b=r+1}^{k}\left(f\left(x_{1}, \ldots, x_{l-1}, b\right)+f\left(x_{1}, \ldots, x_{l-1}, b+k\right)\right) \|_{1}
\end{aligned}
$$

where $f\left(x_{1}, \ldots, x_{l}\right)$ denotes the average of $f\left(x_{1}, \ldots, x_{n}\right)$ over $x_{l+1}, \ldots, x_{n} \in[2 k]$. Then $d \geq 2^{(\log k-\delta \log (k-1)-H(\delta)) n-1}-1 / 2$, where $\delta=(k-1) \epsilon / 2<1 / 2$.

3 Embedded space

The theorem is applied on an L_{1} metric space which is an ambedding of $G_{k, n}$, which can be L_{1}-embedded thanks to the following:
Theorem 4.1 [GNRS04]. Any (weighted) series-parallel graph can be embedded into L_{1} with distortion at most 14 . Moreover, the lengths of the edges can be preserved.
$G_{k, n}$ is defined as follows:
Let $G_{k, 1}$ be a $C_{2 k}$ with edges labeled $1 \ldots 2 k$, distinguished vertices left (between edges 1 and $2 k$) and right (between edges k and $k+1$) and all edges oriented left-to-right.
Let $G_{k, n+1}$ be a $G_{k, n}$ with each edge with label l replaced with a copy of $G_{k, 1}$ with the edge labels prefixed by l.

Figure 1: Graph $G_{3,2}$ (from the paper)

Let $F: G_{k, n} \rightarrow l_{1}^{d}$ be a non-expanding embedding. For $x y \in E\left(G_{k, n}\right)$, define $f(x y)=F(x)-F(y)$.
Theorem 1.1 is proven by showing that f satisfies Theorem 3.1 and choosing apropriate k, n, ϵ.

4 Entropy

Entropy of a discrete random variable X is $H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right)$. For convenience, let $H(p)=-p \log p-(1-p) \log (1-p)$ denote the entropy of a coin flip with probabilities p and $1-p$.
Conditional entropy $H(X \mid Y)$ is $\mathbb{E} H(X \mid Y=y)$ over y chosen according to Y. $H(X \mid Y)=H(X Y)-H(Y)$.
Mutual information is defined as $I(X: Y)=H(X)+H(Y)-H(X Y)=H(X)-$ $H(X \mid Y)$, conditional mutual information $I(X: Y \mid Z)$ as $\mathbb{E} I(X: Y \mid Z=z)$ with z distributed as Z.
Data processing inequality: $I(f(X): Y) \leq I(X: Y)$.
Chain rule for entropy: $H(X Y)=H(X)+H(Y \mid X)$.
Chain rule for mutual information: $I(X Y: Z)=I(X: Z)+I(Y: Z \mid X)$.

Claim 2.1. (Fano's Inequality) Assume $X \sim U([k]), Y$ arbitrary and that there is $f: Y \rightarrow X$ such that $P[f(Y)=X]=p \geq 1 / 2$. Then $I(X: Y) \geq$ $\log k-(1-p) \log (k-1)-H(p)$.

5 Proof of main technical tool

The proof uses the following lemma and the lemma uses the claim below.
The lemma applies to any situation i T3.1 with fixed $X_{1}, \ldots, X_{l-1}, A=X_{l}$ and $B=\mathbb{E}_{X_{l+1}, \ldots, X_{n}} M$
Lemma 3.2. Let A and B be two random variables such that A is uniformly distributed over $[2 k]$ and for any $a \in[2 k]$. Conditioned on $A=a, B$ is distributed according to some probability distribution P_{a} on $[d]$.
Assume that for all $r \in[k-1]$,

$$
\frac{1}{2 k}\left\|\sum_{a=1}^{r}\left(P_{a}+P_{a+k}\right)-\sum_{a=r+1}^{k}\left(P_{a}+P_{a+k}\right)\right\|_{1} \geq 1-\epsilon
$$

Then $I(A: B) \geq \log k-\delta \log (k-1)-H(\delta)$.
Claim 3.3. For any $p_{1}, \ldots, p_{k} \geq 0$,

$$
\left(\sum_{i=1}^{k} p_{i}\right)-\max \left\{p_{1}, \ldots p_{k}\right\} \leq \frac{1}{2} \sum_{r=1}^{k-1}\left(\left(\sum_{i=1}^{k} p_{i}\right)-\left|\sum_{i=1}^{r} p_{i}-\sum_{i=r+1}^{k} p_{i}\right|\right)
$$

