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1 Embeddings

For convenience, let [k] denote {1, . . . , k} and U(S) an uniform distribution over
S. All log’s are base 2.

Let (X, dX) and (Y, dY ) be (possibly finite) metric spaces. We consider metrics
of shortest distances in an (undirected) graph and L1 metric in Rd (denoted ld1).

A mapping f : X → Y of metric spaces is called an embedding with distortion
C > 0) if

SdX(x, y) ≤ dY (f(x), f(y)) ≤ CSdX(x, y)

for some constant S > 0 (scaling factor).



2 Main result

Theorem 1.1 (Main result)

1. (large distortion) For every N , there is an N -point subset of L1 such that
for every D > 1, embedding it into ld1 with distortion D requires d ≥ NΩ(1/D2).

2. (small distortion) For every N , and every ε > 0, there is an N -point
subset of L1 such that embedding it into ld1 with distortion 1 + ε requires d ≥
N1−O(1/ log(1/ε)).

The main technical tool used in the proof is the following theorem:

Theorem 3.1. For any k ≥ 2, n ≥ 1 the following holds. Assume f : [2k]n → Rd
and ε < 1/(k − 1) satisfy:

1. For all x1, . . . , xn ∈ [2k], ‖f(x1, . . . , xn)‖1 ≤ 1

2. For all l ∈ [n], x1, . . . , xl−1 ∈ [2k], and r ∈ [k − 1],

1

2k

∥∥∥∥ r∑
b=1

(f(x1, . . . , xl−1, b) + f(x1, . . . , xl−1, b+ k)) −

k∑
b=r+1

(f(x1, . . . , xl−1, b) + f(x1, . . . , xl−1, b+ k))

∥∥∥∥
1

≥ 1− ε

where f(x1, . . . , xl) denotes the average of f(x1, . . . , xn) over xl+1, . . . , xn ∈ [2k].

Then d ≥ 2(log k−δ log(k−1)−H(δ))n−1 − 1/2, where δ = (k − 1)ε/2 < 1/2.

3 Embedded space

The theorem is applied on an L1 metric space which is an ambedding of Gk,n,
which can be L1-embedded thanks to the following:

Theorem 4.1 [GNRS04]. Any (weighted) series-parallel graph can be embed-
ded into L1 with distortion at most 14. Moreover, the lengths of the edges can
be preserved.

Gk,n is defined as follows:

Let Gk,1 be a C2k with edges labeled 1 . . . 2k, distinguished vertices left (between
edges 1 and 2k) and right (between edges k and k + 1) and all edges oriented
left-to-right.

Let Gk,n+1 be a Gk,n with each edge with label l replaced with a copy of Gk,1
with the edge labels prefixed by l.
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Figure 1: Graph G3,2 (from the paper)

Let F : Gk,n → ld1 be a non-expanding embedding. For xy ∈ E(Gk,n), define
f(xy) = F (x)− F (y).

Theorem 1.1 is proven by showing that f satisfies Theorem 3.1 and choosing
apropriate k, n, ε.

4 Entropy

Entropy of a discrete random variable X is H(X) = −
∑n

i=1 p(xi) log p(xi). For
convenience, let H(p) = −p log p− (1− p) log(1− p) denote the entropy of a coin
flip with probabilities p and 1− p.
Conditional entropy H(X|Y ) is EH(X|Y = y) over y chosen according to Y .
H(X|Y ) = H(XY )−H(Y ).

Mutual information is defined as I(X : Y ) = H(X) +H(Y )−H(XY ) = H(X)−
H(X|Y ), conditional mutual information I(X : Y |Z) as EI(X : Y |Z = z) with z
distributed as Z.

Data processing inequality: I(f(X) : Y ) ≤ I(X : Y ).

Chain rule for entropy: H(XY ) = H(X) +H(Y |X).

Chain rule for mutual information: I(XY : Z) = I(X : Z) + I(Y : Z|X).



Claim 2.1. (Fano’s Inequality) Assume X ∼ U([k]), Y arbitrary and that
there is f : Y → X such that P [f(Y ) = X] = p ≥ 1/2. Then I(X : Y ) ≥
log k − (1− p) log(k − 1)−H(p).

5 Proof of main technical tool

The proof uses the following lemma and the lemma uses the claim below.

The lemma applies to any situation i T3.1 with fixed X1, . . . , Xl−1, A = Xl and
B = EXl+1,...,XnM

Lemma 3.2. Let A and B be two random variables such that A is uniformly
distributed over [2k] and for any a ∈ [2k]. Conditioned on A = a, B is distributed
according to some probability distribution Pa on [d].

Assume that for all r ∈ [k − 1],

1

2k

∥∥∥∥ r∑
a=1

(Pa + Pa+k)−
k∑

a=r+1

(Pa + Pa+k)

∥∥∥∥
1

≥ 1− ε

Then I(A : B) ≥ log k − δ log(k − 1)−H(δ).

Claim 3.3. For any p1, . . . , pk ≥ 0,(
k∑
i=1

pi

)
−max{p1, . . . pk} ≤

1

2

k−1∑
r=1

((
k∑
i=1

pi

)
−

∣∣∣∣∣
r∑
i=1

pi −
k∑

i=r+1

pi

∣∣∣∣∣
)
.


