Towards dimension expanders over finite fields

Zeev Dvir, Amir Shpilka

Presented by Zuzana Safernová

Let \mathbb{F} be a field.
Definition 1 Let $A_{1}, \ldots, A_{k}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be linear mappings. The set $\mathcal{A}=\left\{A_{i}\right\}_{i=1}^{k}$ is a (d, α) dimension expander if for every subspace $V \leq \mathbb{F}^{n}, \operatorname{dim} V \leq d$ we have

$$
\operatorname{dim}\left(V+\sum_{i=1}^{k} A_{i}(V)\right) \geq(1+\alpha) \cdot \operatorname{dim} V
$$

\mathcal{A} is explicit if there exists a poly (n)-time algorithm that, on input n, outputs \mathcal{A}.
Problem 2 Construct an explicit ($d, \alpha)$-dimension expander $\mathcal{A}=\left\{A_{i}\right\}_{i=1}^{k}$, with $d=\Omega(n), \alpha=$ $\Omega(1)$ and $k=O(1)$.

Theorem 3 There exists a constant $\alpha>0$ such that for every n there exists a set $\mathcal{A}(n)$ of $O(\log n)$ linear mappings from \mathbb{F}^{n} to \mathbb{F}^{n} that is an $(\Omega(n), \alpha)$-dimension expander. Moreover, the construction is explicit and independent of the field \mathbb{F}.

Theorem 4 There exists a constant $k_{0}>0$ such that for every n there exists a set $\mathcal{A}(n)$ of k_{0} linear mappings from \mathbb{F}^{n} to \mathbb{F}^{n} that is an $(\Omega(n), \Omega(1 / \log n))$-dimension expander. Moreover, the construction is explicit and independent of the field \mathbb{F}.

Towards the proofs

Let $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}^{n}$ be a non-zero vector.

- $\operatorname{deg}(v):=$ the largest index $i \in[n]$ such that $v_{i} \neq 0$
- $D_{V}:=\{\operatorname{deg}(v) \mid v \in V, v \neq 0\}$, where $V \leq \mathbb{F}^{n}$ and $\operatorname{dim} V=k$; note that $\left|D_{V}\right|=k$
- Claim. Let $D_{A(V)}=\{\operatorname{deg}(A(v)) \mid v \in V, A(v) \neq 0\}$, where A is a linear mapping from \mathbb{F}^{n} to \mathbb{F}^{n}, then $\operatorname{dim}(V+A(V)) \geq\left|D_{V} \cup D_{A(V)}\right|$.
- Let H be a finite group, $M \in H$ the set of generators. The Cayley graph Cay (H, M) induced by M on H is the graph with vertex set H and $u \sim v$ iff $u \cdot v^{-1} \in M \cup M^{-1}$.

Theorem 5 (Wigderson, Xiao) There exist constants $\beta, \gamma>0$ and an algorithm T such that on input n, the algorithm runs in poly (n) time and returns a set $J \subset[n]$ of size $O(\log n)$ such that J generates $\left(\mathbb{Z}_{n},+\right)$ and the graph $\operatorname{Cay}\left(\mathbb{Z}_{n}, J\right)$ is a $(\gamma n, \beta)$-expander.

- $s_{1}, \ldots, s_{n}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ are the n right cyclic shifts of coordinates of \mathbb{F}^{n}, i.e. $s_{j}(v)=$ $\left(v_{n-j+1}, \ldots, v_{n}, v_{1}, v_{2}, \ldots, v_{n-j}\right)$.
- $P_{L}, P_{R}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ are defined as $P_{L}\left(v^{\prime}, v^{\prime \prime}\right)=\left(v^{\prime \prime}, \overline{0}\right), P_{R}\left(v^{\prime}, v^{\prime \prime}\right)=\left(\overline{0}, v^{\prime}\right)$, where $v^{\prime}\left(v^{\prime \prime}\right)$ denotes the first (last) $n / 2$ (n even) coordinates of v.

Lemma 6 Let $n=p+1$ for an odd prime p. Let S_{p+1} denote the set of permutations on $\{1, \ldots, p+1\}$. Let $s_{1}, \ldots, s_{p} \in S_{p+1}$ denote the p right cyclic shifts on the set $\{1, \ldots, p\}$ such that $s_{j}(p+1)=p+1$ for every j. Then, there exists a set $M \in S_{p+1}$ of size $|M| \leq 7$ such that for every $j \in[p]$, the permutation s_{j} can be written as a word of length $O(\log p)$ using elements from $M \cup M^{-1}$. Moreover, this set can be generated in time polynomial in n.

- $P: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is defined as $P(v)=\left(v_{(p+3) / 2}, \ldots, v_{p+1}, 0, \ldots, 0\right)$.
- $Q_{p}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is defined as $Q_{p}(v)=\left(v_{p+2}, \ldots, v_{n}, 0, \ldots, 0\right)$.

Constructions

- Theorem 3: $\mathcal{A}(n)=\left\{s_{j}\right\}_{j \in J} \cup\left\{P_{L}, P_{R}\right\}$ is $\left(\gamma^{\prime} n, \beta^{\prime}\right)$-dimension expander, where $n=2 m$, $\gamma^{\prime}, \beta^{\prime}>0, J$ given by Theorem 5 , so $|J| \leq O(\log m)$.
- Theorem 4 and $n=p+1, p$ prime: $\mathcal{A}(n)=M \cup M^{-1} \cup\{P\}$ is an $(n / 5, \Omega(1 / \log n))$ dimension expander, where M is given by Lemma 6 , and $|M| \leq 7$.
- Theorem 4: $\mathcal{A}^{\prime}(n)=\mathcal{A}(p+1) \cup\left\{Q_{p}\right\}$ is an $(n / 10, \Omega(1 / \log n))$-dimension expander, where $\mathcal{A}(p+1)$ is dimension expander given above (we treat the mappings from $\mathcal{A}(p+1)$ as acting on \mathbb{F}^{n} by applying them only on the first $p+1$ coordinates and leaving the remaining coordinates untouched).

