Quick approximation to matrices - A. Frieze, R. Kannan
predigested and performed by Marek Krčál
$R,|R|=m$ will denote set of rows, $C,|C|=n$ will denote set of columns, $R \times C$ real matrix A is $\left(A_{i j}\right)_{(i, j) \in R \times C}, A_{i j} \in \mathbb{R}$

$$
\|A\|_{F}:=\left(\sum A_{i j}^{2}\right)^{1 / 2} \quad\|A\|_{C}:=\max _{S \subseteq R T \subseteq C}\left|A_{S, T}\right| \text { where } A_{S, T}:=\sum_{(i, j) \in S \times T} A_{i j}
$$

Cut decomposition of matrix A is given by R_{j}, C_{j}, d_{j} for $j=1, \ldots, s$ s.t.

$$
A=D^{(1)}+D^{(2)}+\ldots+D^{(s)}+W \text { where } D^{(j)}=\operatorname{CUT}\left(R_{j}, C_{j}, d_{j}\right)
$$

$$
\operatorname{CUT}(S, T, d)_{i j}:= \begin{cases}d, & (i, j) \in S \times T \\ 0, & \text { otherwise }\end{cases}
$$ the decomposition's width Error matrix coefficient length is $\left(d_{1}^{2}+\cdots+d_{s}^{2}\right)^{1 / 2}$

Theorem 1. Let A be a real $R \times C$-matrix (R and S stands for set of rows and columns). There is $s<0.56^{2} / \epsilon_{2}^{2}$: a cut decomposition of A can be constructed:

$$
\begin{aligned}
& \text { For every } t<0.56^{2} / \epsilon^{2}: \\
& =D^{(1)}+D^{(2)}+\cdots+D^{(s)}+W_{t}^{(s)} \text { where } D^{(j)}=\operatorname{CUT}\left(R_{j}, C_{j}, d_{j}\right)
\end{aligned}
$$

where $\forall S \subseteq R, \forall T \subseteq C: W_{S, T}^{(s)} \leq \epsilon \sqrt{|S||T|}\|A\|_{F \text { or }}^{(s)}\left\|W^{(t)}\right\|_{F}^{2} \leq\left(1-0.56^{2} \epsilon^{2} t\right)\|A\|_{I}$
Theorem 2. Let $\left(A_{i j}\right)_{i, j \in V}, A_{i j} \in[-1,1]$ be a matrix of edge weights of a complete graph. Then in time $2^{\tilde{O}\left(1 / \epsilon^{2}\right)} \log (1 / \delta)$ with probability $1-\delta$ we can find a cut $S^{*}, V \backslash S^{*}$ such that

$$
A_{S^{*}, V \backslash S^{*}} \geq A_{S, V \backslash S}-\epsilon n^{2} \text { for every } S \subseteq V
$$

Proof.

- We use Theorem 1. to get a decomposition of A with error

$$
\left\|A-D^{(1)}-D^{(2)}-\cdots-D^{(s)}\right\|_{C} \leq \epsilon n\|A\|_{F} / 10 \leq \epsilon n^{2} / 10
$$

- $\left(D^{(1)}+\cdots+D^{(s)}\right)_{S, V \backslash S}=\sum d_{j} f_{j} g_{j}$ where $f_{j}=\left|S \cap R_{j}\right|$ and $g_{j}=$ $\left|(V \backslash S) \cap C_{j}\right|$
- approximate: $\bar{f}_{j}:=\left\lfloor f_{j} / \nu\right\rfloor \nu$ and $\bar{g}_{j}:=\left\lfloor g_{j} / \nu\right\rfloor \nu$. We have

$$
\left|\sum_{j=1}^{s} d_{j} f_{j} g_{j}-\sum_{j=1}^{s} d_{j} \bar{f}_{j} \bar{g}_{j}\right| \leq s \sqrt{27}\left(2 n \nu-\nu^{2}\right) \leq \epsilon n^{2} / 3
$$

Constant time construction For every $\delta>0$ in time $2^{\tilde{O}\left(1 / \epsilon^{2}\right)} \log \delta$ with probability $1-\delta$ the decomposition such as
of width $s<192 / \epsilon^{2}$ and coefficient length $\sqrt{27}\|A\|_{F} / \sqrt{m n}$ can be constructed.

choose $\nu:=\frac{\epsilon n}{9 \sqrt{27 s}}$ in order to get

- brute force: enumerate all $O\left(1 / \epsilon^{3}\right)^{2 s}$ possible values for \bar{f} and \bar{g}, question whether for a given values of \bar{f}, \bar{g} a cut S exists reduces to an integer program that we replace by its linear relaxation
- Let \mathcal{P} be the coarsest partition of V such that each R_{j}, C_{j} is a union of sets in \mathcal{P}
- For every \bar{f}, \bar{g} define the following IP:

Find values x_{P} (represents $\left.|S \cap P|\right), P \in \mathcal{P}$ subject to:

$$
\begin{array}{lll}
0 \leq x_{P} & \leq|P| & P \in \mathcal{P} \\
\bar{f}_{j} \leq \sum_{P \subseteq R_{j}} x_{P} & \leq \bar{f}_{j}+\nu \quad j=1, \ldots, s \\
\bar{g}_{j} \leq \sum_{P \subseteq C_{j}}\left(|P|-x_{P}\right) & \leq \bar{g}_{j}+\nu
\end{array}
$$

- Find a feasible solution if it exists. Round down each value to

