Counting Stars and Other Small Subgraphs in Sublinear Time

Mira Goen, Dana Ron, Yuval Shavitt
presented by Marek Tesař

Let μ be a meassure defined over graphs and let G be an unknown graph over n vertices. An algorithm for estimating $\mu(G)$ is given an approximation parameter ϵ, the number of vertices n, and query access to the graph G (degree queries and neighbor queries). Algorithm output an estimate $\hat{\mu}$ of $\mu(G)$ such that with hight constant probability, $\hat{\mu}=(1 \pm \epsilon) \cdot \mu(G)$, where for $\gamma \in(0,1)$ we use the notation $a=(1 \pm \gamma) . b$ to mean that $(1-\gamma) . b \leq a \leq(1+\gamma) . b$.

We denote $l(G)$ the number of length-2 paths in G. Set $\beta=\frac{\epsilon}{c}$ for some constant $c>1$ and $t=\left\lceil\log _{(1+\beta)} n\right\rceil$ (so that $t=O\left(\frac{\log n}{\epsilon}\right)$).

Definition For $i=0, \ldots, t$ define

$$
B_{i}=\left\{v: \operatorname{deg}(v) \in\left((1+\beta)^{i-1},(1+\beta)^{i}\right]\right\}
$$

Algorithm 1(Estimating the number of length-2 paths for $G=$ ($V, E)$)

Input: ϵ and \tilde{l}

- 1. Let $\beta=\frac{\epsilon}{32}, t=\left\lceil\log _{(1+\beta)} n\right\rceil$, and

$$
\theta_{1}=\frac{\epsilon^{\frac{2}{3} \tilde{l}^{\frac{1}{3}}}}{32 t^{\frac{4}{3}}}
$$

- 2. Uniformly and independently select $\Theta\left(\frac{n}{\theta_{1}} \cdot \frac{\log t}{\epsilon^{2}}\right)$ vertices from V, and let S denote the multiset of selected vertices (we allow repetitions).
- 3. For $i=0, \ldots, t$ determine $S_{i}=S \cap B_{i}$ by performing a degree query on every vertex in S.
- 4. Let $L=\left\{i: \frac{\left|S_{i}\right|}{|S|} \geq 2 \frac{\theta_{1}}{n}\right\}$.

If $\max _{i \in L}\left\{2\binom{(1+\beta)^{i-1}}{2} \cdot \theta_{1}\right\}>4 \tilde{l}$ then terminate.

- 5. For each $i \in L$ run Algorithm 2 to get estimates $\left\{\hat{e}_{i, j}\right\}_{j \notin L}$ for $\left\{\left|E_{i, j}\right|\right\}_{j \notin L}$.
-6. Output

$$
\hat{l}=\sum_{i \in L} n \cdot \frac{\left|S_{i}\right|}{|S|} \cdot\binom{(1+\beta)^{i}}{2}+\sum_{j \notin L} \frac{1}{2} \sum_{i \in L} \hat{e}_{i, j} \cdot\left((1+\beta)^{j}-1\right)
$$

$\tilde{\boldsymbol{l}}$	Query and Time Complexity
$\tilde{l} \leq n^{\frac{3}{2}}$	$O\left(\frac{n}{\tilde{l}^{\frac{1}{3}}}\right) \cdot \operatorname{poly}\left(\log n, \frac{1}{\epsilon}\right)$
$n^{\frac{3}{2}} \leq \tilde{l} \leq n^{2}$	$O\left(n^{\frac{1}{2}}\right) \cdot p o l y\left(\log n, \frac{1}{\epsilon}\right)$
$n^{2} \leq \tilde{l}$	$O\left(\frac{n^{\frac{3}{2}}}{\tilde{l}^{\frac{1}{2}}}\right) \cdot \operatorname{poly}\left(\log n, \frac{1}{\epsilon}\right)$

Theorem 0.1 If $\frac{1}{2} l(G) \leq \tilde{l} \leq 2 l(G)$ then with probability at least $\frac{2}{3}$, the output, \hat{l}, of Algorithm 1 satisfies $\hat{l}=(1 \pm \epsilon) \cdot l(G)$. The query complexity and running time of the algorithm are

$$
O\left(\frac{n}{\tilde{l}^{\frac{1}{3}}}+\min \left\{n^{\frac{1}{2}}, \frac{n^{\frac{3}{2}}}{\tilde{l}^{\frac{1}{2}}}\right\}\right) \cdot \operatorname{poly}\left(\log n, \frac{1}{\epsilon}\right)
$$

Theorem 0.2 Any constant-factor multiplication algorithm for the number of length-2 paths:

1) must perform $\Omega\left(\frac{n}{l^{\frac{1}{3}}(G)}\right)$ queries
2) must perform $\Omega(\sqrt{n})$ queries when the number of length-2 paths is $O\left(n^{2}\right)$
3) must perform $\Omega\left(\frac{n^{\frac{3}{2}}}{l^{\frac{1}{2}}(G)}\right)$ queries when the number of length-2 paths is $\Omega\left(n^{2}\right)$

Theorem 0.3 For $m=O(n)$ it is necessary to perform $\Omega(m)$ queries in order to distinguish with high constant probability between the case that a graph contains $\Theta(n)$ triangles and the case that it contains no triangles. This bound holds when neighbor and degree queries are allowed.

Theorem 0.4 For $m=O(n)$ it is necessary to perform $\Omega(m)$ queries in order to distinguish with high constant probability between the case that a graph contains $\Theta\left(n^{2}\right)$ length-3 paths and the case that it contains no length-3 path. This bound holds when neighbor and degree queries are allowed.

