Complexity measures of sign matrices

N. Linial, S. Mendelson, G. Schechtman and A. Shraibman

presented by Tereza Klimošová
Definition 1. Let E_{1} be a norm on \mathbb{C}^{n} and E_{2} a norm on \mathbb{C}^{m}. We define a norm $\|\cdot\|_{E_{1} \rightarrow E_{2}}$ on the space of complex matrices $m \times n$ by

$$
\|A\|_{E_{1} \rightarrow E_{2}}=\sup _{\|x\|_{E_{1}}=1}\|A x\|_{E_{2}} .
$$

We define a factorization constant for ℓ_{2} of $m \times n$ matrix

$$
\begin{gathered}
\gamma_{2}(A)=\min _{X Y=A}\|X\|_{\ell_{2} \rightarrow \ell_{\infty}^{m}}\|Y\|_{\ell_{1}^{n} \rightarrow \ell_{2}} \\
\gamma_{2}(A)=\min _{X Y=A} \max _{i, j}\left\|x_{i}\right\|_{\ell_{2}}\left\|y_{j}\right\|_{\ell_{2}},
\end{gathered}
$$

where x_{i} are rows of X and y_{j} are columns of Y.
Definition 2. We say that a sign matrix A has margin

$$
m(A)=\sup _{X, Y: \operatorname{sign}\left(\left\langle x_{i}, y_{j}\right\rangle\right)=a_{i j}} \min _{i, j} \frac{\left|\left\langle x_{i}, y_{j}\right\rangle\right|}{\left\|x_{i}\right\|\left\|y_{j}\right\|}
$$

and we denote $m c(A)=m(A)^{-1}$ margin complexity of A.
Definition 3. The sign pattern of a matrix B is the sign matrix $\left(b_{i j}\right)$. For a sign matrix A, let $S P(A)$ be a family of matrices B satisfying $\left|b_{i j}\right| \geq 1$ and $s p(B)=A$.

Lemma 1. For every $m \times n$ signed matrix A,

$$
m c(A)=\min _{X Y \in S P(A)}\|X\|_{\ell_{2} \rightarrow \ell_{\infty}^{m}}\|Y\|_{\ell_{1}^{n} \rightarrow \ell_{2}}
$$

Corollary 2. $m c(A) \leq \gamma_{2}(A)$.
Fact 1.

$$
\left\|A^{T}\right\|_{\ell_{\infty}^{m} \rightarrow \ell_{1}^{n}} \leq \gamma_{2}^{*}\left(A^{T}\right) \leq K_{G}\left\|A^{T}\right\|_{\ell_{\infty}^{m} \rightarrow \ell_{1}^{n}}
$$

Corollary 3. $m c(A) \geq \frac{m n}{\gamma_{2}^{2}\left(A^{T}\right)}$.
Lemma 4. For every complex $m \times n$ signed matrix A,

$$
\gamma_{2}^{2}(A) \leq\|A\|_{\ell_{1}^{n} \rightarrow \ell_{\infty}^{m}} \operatorname{rank}(A)
$$

Definition 4. Let A be a sign matrix $m \times n$. We denote $d(A)$ the smallest possible dimension d such that there exist vectors $x_{1} \ldots x_{m}$ and $y_{1} \ldots y_{n}$ such that $\operatorname{sign}\left(\left\langle x_{i}, y_{j}\right\rangle\right)=a_{i j}$ for every i, j.

For every sign matrix $d(A) \leq \operatorname{rank}(A)$. Gap can be arbitrarily large: $2 I_{n}-J_{n}$ has rank $=n$ and $d=2$.
Lemma 5. For every $m \times n$ sign matrix A

$$
d(A) \geq \frac{\sqrt{m n}}{\gamma_{2}^{*}(A)}
$$

Lemma 6.

$$
\operatorname{Pr}\left(\|A\|_{\ell_{\infty}^{n} \rightarrow \ell_{1}^{m}} \leq 2 m n^{1 / 2}\right) \geq 1-(e / 2)^{-2 m}
$$

where $m \geq n$, and the matrix A is drawn uniformly at random from among the $m \times n$ sigh matrices.
Lemma 7. Let $m \geq n$ and let A be a random $m \times n$ sign matrix. Denote m_{γ} the median of γ_{2}, then

$$
\left.\operatorname{Pr}\left(\mid \gamma_{2}(A)-m_{\gamma}\right) \mid>c\right) \leq 4 e^{-c^{2} / 16} .
$$

