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1 Introduction

In Gap-Hamming-Distance (or just GHD), Alice and Bob each have an n-bit string (x and
y). Their goal is to distinguish between the cases ∆(x, y) ≥ n/2+

√
n and ∆(x, y) ≤ n/2−

√
n

by communicating as few bits as possible. Note that the trivial protocol would use Θ(n) bits
to transfer one of the strings.

GHDn,t,g is the problem GHD with n-bit strings where Alice and Bob must distinguish
between ∆(x, y) ≥ t+ g and ∆(x, y) ≤ t− g.

For a (partial) function f : X × Y → {0, 1, ∗} (where ∗ represent the undefined values), a
(possibly randomized) protocol P fails on input (x, y) if f(x, y) 6= ∗ and P (x, y) 6= f(x, y).
Let cost(P ) denote the worst-case communication cost of P in bits.

Randomized protocols. A randomized protocol P computes computes f with error at most
ε if

∀(x, y) ∈ X × Y : f(x, y) 6= ∗ =⇒ Pr[P (x, y) 6= f(x, y)] ≤ ε.

Let err(P ) denote the least ε such that P computes f with error at most ε.

Also let Rε(f) = minP {cost(P ), P is a randomized protocol forfwitherr(P ) ≤ ε}.

Deterministic protocols. Let errµ(P ) denote the probability that P fails on (x, y) with
(x, y) distributed according to µ.

Let errµ(P ) denote the least ε such that P computes f on input distributed according to µ
with error at most ε.

Also let Dµ,ε(f) = minP {cost(P ), P is a deterministic protocol for f with errµ(P ) ≤ ε}.

We use R(f) for R1/3(f) and Dµ(f) for Dµ,1/3(f).

Distributions. Let ξn,p denote the distribution resulting from the following process: Pick
x = y from {0, 1}n uniformly, then flip every bit of y with probability (1− p)/2, output (x, y)
(so ξn,0 is uniform on {0, 1}2n). We omit n where clear from the context.



2 Main result

Theorems 2.6 and 2.7 (Main result)

R(GHDn,n/2,
√
n) = Ω(n)

Moreover, there exists an absolute constant ε > 0 for which

Dξ0,ε(GHDn,n/2,
√
n) = Ω(n)

3 Reductions

Yao’s principle. For any (communication) problem, there is a distribution α over the correct
deterministic algorithms A and a distribution ξ over the inputs X such that

max
x∈X

Ea∼α(costa(x)) = min
a∈α

Ex∼ξ(costa(x)).

This implies Rε(f) ≥ Dµ,ε(f) for any ε, f and µ.

Lemma 4.1 For all integers n, t, g, k, l > 0:

(1) R(GHDn,t,g+k) ≤ R(GHDn,t,g)

(2) R(GHDn,t,g) ≤ R(GHDkn,kt,kg)

(3) R(GHDn,t,g) ≤ R(GHDn+k+l,t+k,g)

(4) R(GHDn,t,g) = R(GHDn,n−t,g)

Lemma 4.2 For all integers n > 0 and reals b > 0 and b ≤
√
n/2, we have

R(GHDn,n/2−b
√
n,
√
2n) ≤ R(GHD2n,n,

√
2n).

Lemma 4.T There exist δ0 > 0, a > 0 and b > 0 such that for every deterministic protocol
P for GHD2n,n,

√
n with errµ2n,0(P ) = δ ≤ δ0 there is a randomized protocol Q showing that

R(GHDn,n/2−b
√
n,
√
2n) = O(Dξ0(GHD)).

4 Rectangles and Corruption

A set R ∈ X × Y is a rectangle if R = X × Y for X ⊆ X and Y ⊆ Y .

Lemma 2.1 For a deterministic protocol P on X×Y communicating c bits, for every output
value z ∈ Z, there exist 2c pairwise disjoint rectangles R1,z, . . . , R2c,z such that for all (x, y) ∈
X × Y we have

P (x, y) = z ⇐⇒ (x, y) ∈
2c⋃
i=1

Ri,z.



Theorem 2.2 For all α0, α1, α+, ε > 0 with ε < (α1 − α+)/(α0 + α1), there exist β ∈ R and
ε′ > 0 such that:

Let f : X × Y → {0, 1, ∗}, Ai = f−1(i). Suppose there are distributions µ0, µ1, µ+ on X × Y
and m > 0 such that

(1) for i ∈ {0, 1}, µi(Ai) ≥ 1− ε
(2) for all rectangles R ⊆ X × Y , α1µ1(R)− α+µ+(R) ≤ α0µ0(R) + 2−m

Then, for ν = (α0µ0 + α1µ1)/(α0 + α1), we have Dν,ε′(f) ≥ m+ β.

4.1 Towards the main theorem

Let fb = GHDn,n/2−b
√
n,
√
2n.

Lemma 2.4 For all ε > 0 there exists b > 0 such that for n large enough, ξ4b/
√
n(A0) ≥ 1− ε,

and ξ0(A1) ≥ 1− ε where Ai = f−1b (i).

Lemma 2.5 For all b > 0 there is δ > 0 such that for n large enough,

∀R ⊆ {0, 1}n × {0, 1}n rectangular :
1

2

(
ξ−4b/

√
n(R) + ξ4b/

√
n(R)

)
≥ 2

3
ξ0(R)− 2−δn

Let ε = 1/8, let b be as in Lemma 2.4, let δ be as in Lemma 2.5, let n be large enough (for
2.4 and 2.5). Also let m = δn, µ0 = ξ4b/

√
n, α0 = 1/2, µ1 = ξ0, α1 = 2/3, µ+ = ξ−4b/

√
n,

α+ = 1/2, ε = 1/8 and fb = GHDn,n/2−b
√
n,
√
2n.

4.2 Steps for Lemma 2.5

Let γn denote n-dimensional Gauss distribution with density Ze−‖x‖
2/2 (Z is a normalizing

element).

A η-correlated gaussioan pair (x, y) has the following distribution: choose x and z from γn

independently and then set y = ηx+
√

1− η2z.

Theorem 3.5 For all c, ε > 0, there is δ > 0 such that for n large enough and 0 ≤ η ≤ c/
√
n

and all A,B ⊆ Rn with γn(A), γn(B) ≥ e−δn we have

1

2

(
Pr

(x,y) is η−corr.
[x ∈ A, y ∈ B] + Pr

(x,y) is −η−corr
[x ∈ A, y ∈ B]

)
≥ (1− ε)γn(A)γn(B).

Corollary 3.8 For all c, ε > 0, there is δ > 0 such that for n large enough and 0 ≤ p ≤ c/
√
n

and all A,B ⊆ {0, 1}n with |A|, |B| ≥ 2(1−δ)n we have

1

2
(ξ−p(A×B) + ξp(A×B)) ≥ (1− ε)ξ0(A×B).



Recall that D(P‖Q) =
∫
P (x) ln(P (x)/Q(x))x. . Let Dγ(X) = D(P‖γ) for X ∼ P .

Theorem 3.1 (the taste of Gauss) For all ε, δ > 0 and n large enough, have A ∈ Rn such
that γn(A) ≥ e−ε

2n. Then for all but e−δn/36 of unit vectors y ∈ §n−1 the distribution of the
projection 〈x, y〉 where x ∼ γn|A is equal to αX + Y for some 1 − δ ≤ α ≤ 1 and (possibly
dependent) random variables X and Y satisfying

Dγ(X|Y ) ≤ ε.


