A Simple Deterministic Reduction for the Gap Minimum Distance of Code Problem

Per Austrin
University of Toronto
Subhash Khot
New York University

May 16, 2012

Presented by: Pavel Rytír

1 Handout

Let q equals 2 .
Definition 1.1. A linear code C over a field \mathbb{F}_{q} is a linear subspace of \mathbb{F}_{q}^{n}, where n is the block-length of the code and dimension of the subspace C is the dimension of the code. The distance of the code $d(C)$ is the minimum Hamming weight of any non-zero vector in C.

Definition 1.2. Min $\operatorname{Dist}(q)$ is the problem of determining the distance $d(C)$ of a linear code $C \subseteq \mathbb{F}_{q}^{n}$. The code may be given by the basis vectors for the subspace C or by the linear forms defining the subspace.
Definition 1.3. $\operatorname{NCP}(q)$ is the problem of determining the minimum distance from a given point $p \in \mathbb{F}_{q}^{n}$ to any codeword in a given code $C \subseteq \mathbb{F}_{q}^{n}$. Equivalently, it is the problem of determining the minimum Hamming weight of any point z in a given affine subspace of \mathbb{F}_{q}^{n} (which would be $C-p$).
Definition 1.4. Let $C_{1}, C_{2} \subseteq \mathbb{F}_{q}^{n}$ be linear codes. Then the linear code $C_{1} \otimes C_{2} \subseteq \mathbb{F}_{q}^{n^{2}}$ is defined as the set of all $n \times n$ matrices over \mathbb{F}_{q} such that each of its columns is a codeword in C_{1} and each of its rows is a codeword in C_{2}.

Fact 1.5. Let $C_{1}, C_{2} \subseteq \mathbb{F}_{q}^{n}$ be linear codes. Then the linear code $C_{1} \otimes C_{2} \subseteq \mathbb{F}_{q}^{n^{2}}$ has distance $d\left(C_{1} \otimes C_{2}\right)=d\left(C_{1}\right) d\left(C_{2}\right)$.
Lemma 1.6. Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear code of distance $d=d(C)$, and let $Y \in C \otimes C$ be a non-zero codeword with the additional properties that

1. The diagonal of Y is zero.
2. Y is symmetric.

Then Y has at least $d^{2}(1+1 / q)$ non-zero entries.
Fact 1.7. Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear code of distance $d=d(C)$. Then for any two linearly independent codewords $x, y \in \mathbb{F}_{q}^{n}$, the number of coordinates $i \in[n]$ for which either $x_{i} \neq 0$ or $y_{i} \neq 0$ is at least $d(1+1 / q)$.

1.1 Hardness of Constraint Satisfaction

Definition 1.8. An instance Ψ of the Max NAND problem consists of a set of quadratic equations over \mathbb{F}_{2}, each of the form $x_{k}=\operatorname{NAND}\left(x_{i}, x_{j}\right)=1+x_{i} \cdot x_{j}$ for some variables x_{i}, x_{j}, x_{k}. The objective is to find an assignment to the variables such that as many equations as possible are satisfied. We denote by $\operatorname{Opt}(\Psi) \in[0,1]$ the maximum fraction of satisfied equations over all possible assignments to the variables.

Theorem 1.9. There is a universal constant $\delta>0$ such that given a MAX NAND instance Ψ it is NP-hard to determine whether $\operatorname{Opt}(\Psi)=1$ or $\operatorname{Opt}(\Psi) \leq 1-\delta$.

1.2 Reduction to Nearest Codeword

Given a MAX NAND instance Ψ with n variables and m constraints, we shall construct an affine subspace \mathcal{S} of $\mathbb{F}_{2}^{4 m}$ such that:
(i) If Ψ is satisfiable then \mathcal{S} has a vector of Hamming weight at most m.
(ii) If $\operatorname{Opt}(\Psi) \leq 1-2 \delta$ then \mathcal{S} has no vector of Hamming weight less than $(1+2 \delta) m$.

This proves, according to Definition 1.3, that $\mathrm{NCP}(2)$ is NP-hard to approximate within a factor $1+2 \delta$.

Every constraint $x_{k}=1+x_{i} x_{j}$ in Ψ gives rise to four new variables, as follows. We think of the four variables as a function $S_{i j k}: \mathbb{F}_{2}^{2} \rightarrow \mathbb{F}_{2}$. The intent is that this function should be the indicator function of the values of x_{i} and x_{j}, in other words, that

$$
S_{i j k}(a, b)=\left\{\begin{array}{ll}
1 & \text { if } x_{i}=a \text { and } x_{j}=b \\
0 & \text { otherwise }
\end{array} .\right.
$$

With this interpretation in mind, each function $S_{i j k}$ has to satisfy the following linear constraints over \mathbb{F}_{2} :

$$
\begin{align*}
S_{i j k}(0,0)+S_{i j k}(0,1)+S_{i j k}(1,0)+S_{i j k}(1,1) & =1 \tag{1}\\
S_{i j k}(1,0)+S_{i j k}(1,1) & =x_{i} \tag{2}\\
S_{i j k}(0,1)+S_{i j k}(1,1) & =x_{j} \tag{3}\\
S_{i j k}(0,0)+S_{i j k}(0,1)+S_{i j k}(1,0) & =x_{k} . \tag{4}
\end{align*}
$$

1.3 Reduction to Minimum Distance

$$
\begin{equation*}
S_{i j k}(0,0)+S_{i j k}(0,1)+S_{i j k}(1,0)+S_{i j k}(1,1)=x_{0} \tag{1'}
\end{equation*}
$$

A first observation is that the system of constraints relating $S_{i j k}$ to $\left(x_{0}, x_{i}, x_{j}, x_{k}\right)$ is invertible. Namely, we have Equations (13)-(4), and inversely, that

$$
\begin{array}{ll}
S_{i j k}(0,0)=x_{i}+x_{j}+x_{k} & S_{i j k}(0,1)=x_{0}+x_{j}+x_{k} \\
S_{i j k}(1,0)=x_{0}+x_{i}+x_{k} & S_{i j k}(1,1)=x_{0}+x_{k} .
\end{array}
$$

Analogously to the $S_{i j k}$ functions intended to check the NAND constraints of Ψ, we now introduce for every $i, j \in[N]$ a function $Z_{i j}: \mathbb{F}_{2}^{2} \rightarrow \mathbb{F}_{2}$ that is intended to check the
constraint $Y_{i j}=y_{i} \cdot y_{j}$, and that is supposed to be the indicator of the assignment to the variables $\left(y_{i}, y_{j}\right)$. We then impose the analogues of the constraints (1])-(4)), viz.

$$
\begin{align*}
Z_{i j}(0,0)+Z_{i j}(0,1)+Z_{i j}(1,0)+Z_{i j}(1,1) & =x_{0} \tag{5}\\
Z_{i j}(1,0)+Z_{i j}(1,1) & =y_{i} \tag{6}\\
Z_{i j}(0,1)+Z_{i j}(1,1) & =y_{j} \tag{7}\\
Z_{i j}(1,1) & =Y_{i j} . \tag{8}
\end{align*}
$$

Theorem 1.10. For any finite field \mathbb{F}_{q}, there exists a constant $\gamma>0$ such that it is NPhard (via a deterministic reduction) to approximate the $\operatorname{Min} \operatorname{Dist}(q)$ problem to within a factor $1+\gamma$.

