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Definitions. the chromatic number of a set X ⊆ R
n:

χ(X) = min{c; X = X1 ∪ X2 ∪ . . .Xc, ∀i ∀x, y ∈ Xi |x − y| 6= 1}
Sn−1

r = {x ∈ R
n; |x| = r}

Known results:

• 4 ≤ χ(R2) ≤ 7

• χ(Rn) ≤ (3 + o(1))n [Larman and Rogers, 1972]

• χ(Rn) ≥ (1.207 . . . + o(1))n [Frankl and Wilson, 1981]

• χ(Rn) ≥ (1.239 . . . + o(1))n [Raigorodskii, 2000]

• χ(Sn−1
r ) ≤ cn5/2(2r)n, if r > 1/2 [Rogers, 1963]

Conjecture. [Erdős, 1981] χ(Sn−1
r ) → ∞ for any fixed r > 1/2.

Claim. [Lovász, 1983] χ(Sn−1
r ) ≥ n for r > 1/2 and χ(Sn−1

r ) ≤ n+1 for r <
√

n
2n+2

.

Conjecture. [Lovász, 1983] χ(Sn−1
r ) grows exponentially for r >

√

n
2n+2

.

Theorem 1. For any r ∈
(

1
2
, 1√

2

)

, there exists a function δ(n) = δ(n, r) = o(1),

n → ∞, such that for every n ∈ N, we have

χ(Sn−1
r ) ≥

(

2qq(1 − q)1−q + δ(n)
)n

,

where q = 1
8r2 .

Proof. (sketch) Consider the following graph G(W, F ):

W = {x = (x1, . . . , xm); xi ∈ {−1, 1}, x1 + · · ·+ xm = 0} ,

F = {{x, y}; x, y ∈ V, |x − y| =
√

2m − 2a},

where m = 4⌊n−1
4
⌋, r =

√
m√

2m−2a′
,

p is the smallest prime number satisfying p > m−a′

4
and a = m − 4p < a′.

Estimate α(G) by investigating the set of polynomials

P ′
x(y) =

∏

i∈{0,1,...,p−1}\{m mod p}
(i − (x, y)), x ∈ W.



Theorem 2. Let P be the set of prime numbers. Let f(x) be such a function that
for any x ∈ R, x ≥ 0,

f(x) = min{p ∈ P : p > x} − x.

Let
m(x) = max{m < x; m ≡ 0 (mod 4)}.

Consider a sequence {rn}∞n=1, where rn > 1
2

for each n ∈ N . Set

p(n) =
m(n)

8r2
n

+ f

(

m(n)

8r2
n

)

.

If
m(n)

4
≤ p(n) ≤ m(n)

2
, n ∈ N,

then

χ(Sn−1
r ) ≥

(

m(n)
m(n)/2

)

(

m(n)
p(n)

) .

Theorem 3. Consider a sequence {rn}∞n=1, where rn > 1
2

for each n ∈ N . Let
κ < 2, and let p(n) be the same as in Theorem 2. If

m(n)

4
≤ p(n) ≤ m(n)

2
−

√

m(n) ln m(n)

κ
, n ∈ N,

then
χ(Sn−1

r ) > n + 1, ∀n ≥ n0.

Theorem. [Baker, Harman and Pintz, 2001] The “prime gap” function satisfies

f(x) = O(x0.525).

Theorem 4. Assume that c0 > 0 is such that f(x) ≤ c0x
0.525 for every x. Then,

there exists a constant c′0 > 0 such that for any sequence of radii rn satisfying the
inequality

rn ≥ 1

2
+

c′0
n0.475

,

we have the bound
χ(Sn−1

r ) > n + 1, ∀n ≥ n0.

Theorem 5. Assume that c1 > 0 is such that f(x) ≤ c1 ln2 x for every x. Then,
there exists a constant c′1 > 0 such that for any sequence of radii rn satisfying the
inequality

rn ≥ 1

2
+ c′1

√

lnn

n
,

we have the bound
χ(Sn−1

r ) > n + 1, ∀n ≥ n0.

Theorem 6. There exists a constant c2 > 0 such that for any sequence of radii rn

satisfying the inequality

rn ≤ 1

2
+

c2

n
we have the bound

χ(Sn−1
r ) ≤ n + 1, ∀n ≥ n0.


