Algebraic Independence and Blackbox Identity Testing
 M. Beecken, J. Mittmann, N. Saxena

Presented by Zuzana Safernová

Basic definitions

Polynomial identity testing (PIT) is the problem of checking whether a given n-variate arithmetic circuit computes the zero polynomial in $K\left[x_{1}, \ldots, x_{n}\right]$.

By a blackbox PIT test for a family of circuits \mathcal{F} we mean efficiently designing a hitting set $\mathcal{H} \subseteq \bar{K}^{n}$ such that: Given a nonzero $C \in \mathcal{F}$, there exists an $\bar{a} \in \mathcal{H}$ that hits C, i. e. $C(\bar{a})=0$.

Polynomials $\left\{f_{1}, \ldots, f_{m}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]$ (over a field K) are algebraically independent if there is no non-zero polynomial F such that $F\left(f_{1}, \ldots, f_{m}\right)=0$. The transcendence degree, $\operatorname{trdeg}\left\{f_{1}, \ldots, f_{m}\right\}$, is the maximal number r of algebraically independent polynomials.

Results

Theorem 1 Let C be an m-variate circuit. Let f_{1}, \ldots, f_{m} be ℓ-sparse, degree- δ, n-variate polynomials of transcendence degree r. Suppose we have oracle access to the n-variate degree-d circuit $C^{\prime}:=C\left(f_{1}, \ldots, f_{m}\right)$. There is a blackbox poly $\left(\text { size }\left(C^{\prime}\right) d \ell \delta\right)^{r}$ time test to check $C^{\prime}=0$ (assuming that K has characteristic zero or larger than δ^{r}).

Theorem 2 Let C be a $\sum \Pi \sum \prod_{\delta}(2, s, n)$ circuit over an arbitrary field. There is a blackbox poly $(\delta s n)^{\delta^{2}}$ time test to check $C=0$.

Perron, Jacobi \& Krull

$K[\bar{x}]=K\left[x_{1}, \ldots, x_{n}\right], K-$ a field, \bar{K} - the algebraic closure of $K, R^{*}=$ multiplicative group of units of a ring R

Theorem 3 (Perron) Let $f_{1}, \ldots, f_{n+1} \in K[\bar{x}]$ be non-constant polynomials of degree δ_{i} for $i \in[n+1]$. Then there exists a non-zero polynomial $F \in K\left[y_{1}, \ldots, y_{n+1}\right]$ such that $F\left(f_{1}, \ldots, f_{n+1}\right)=0$ and $\operatorname{deg} F \leq \prod_{i} \delta_{i} / \min _{i}\left\{\delta_{i}\right\}$.

Corollary 4 Let $f_{1}, \ldots, f_{m} \in K[\bar{x}]$ be algebraically dependent polynomials of maximal degree $\delta \geq 1$ and trdeg r. Then there exists a non-zero polynomial $F \in K\left[y_{1}, \ldots, y_{m}\right]$ of degree at most δ^{r} such that $F\left(f_{1}, \ldots, f_{m}\right)=0$.

Theorem 5 (Jacobi) Let $f_{1}, \ldots, f_{m} \in K[\bar{x}]$ be polynomials of degree at most δ and trdeg r. Assume that $\operatorname{ch}(K)=0$ or $\operatorname{ch}(K)>\delta^{r}$. Then $\operatorname{rk}_{L} J_{x}\left(f_{1}, \ldots, f_{m}\right)=\operatorname{trdeg}_{K}\left\{f_{1}, \ldots, f_{m}\right\}$, where $L=K(\bar{x})$.

Lemma 6 Let $f_{1}, \ldots, f_{m} \in K[\bar{x}]$. Then $\operatorname{trdeg}_{K}\left\{f_{1}, \ldots, f_{m}\right\} \geq \operatorname{rk}_{L} J_{x}\left(f_{1}, \ldots, f_{m}\right)$, where $L=K(\bar{x})$.

Definition $7 A \mathrm{~K}$-algebra A is a commutative ring (with 1) containing K as a subring. A map $A \rightarrow B$ is K -algebra homomorfism if it is a ring homomorphism that fixes K elementwise. Let $a_{1}, \ldots, a_{m} \in A$, consider $\varphi: K[\bar{y}] \rightarrow A, \varphi(F)=F\left(a_{1}, \ldots, a_{m}\right)$, where $K[\bar{y}]=$
$K\left[y_{1}, \ldots, y_{m}\right]$. If $\operatorname{ker} \varphi=\{0\}$, then $\left\{a_{1}, \ldots, a_{m}\right\}$ are algebraically independent over K. For $S \subseteq A$ define

$$
\operatorname{trdeg}_{K}(S):=\sup \{|T|, T \subseteq S \text { is finite and algebraically independent }\}
$$

The image of $K[\bar{y}]$ under φ is the subalgebra of A generated by a_{1}, \ldots, a_{m} and is denoted by $K\left[a_{1}, \ldots, a_{m}\right]$. An algebra of this form is called an affine K-algebra, and it is called an affine K-domain if it is an integral domain. The Krull dimension of A, denoted by $\operatorname{dim}(A)$, is defined as the supremum over all $r \geq 0$ for which there is a chain $P_{0} \subsetneq P_{1} \subsetneq \cdots \subsetneq P_{r}$ of prime ideals $P_{i} \subsetneq A$.

Theorem 8 Let $A=K\left[a_{1}, \ldots, a_{m}\right]$ be an affine K-algebra. Then $\operatorname{dim}(A)=\operatorname{trdeg}_{K}(A)=$ $\operatorname{trdeg}_{K}\left\{a_{1}, \ldots, a_{m}\right\}$.

Corollary 9 Let A, B be K-algebras and let $\varphi: A \rightarrow B$ be a K-algebra homomorphism. If A is an affine algebra, then so is $\varphi(A)$ and we have $\operatorname{dim}(\varphi(A)) \leq \operatorname{dim}(A)$. If, in addition, φ is injective, then $\operatorname{dim}(\varphi(A))=\operatorname{dim}(A)$.

Theorem 10 (Krull's Hauptidealsatz) Let A be an affine K-domain and let $a \in A \backslash\left(A^{*} \cup\right.$ $\{0\})$. Then $\operatorname{dim}(A /<a>)=\operatorname{dim}(A)-1$.

Faithful homomorphisms: reducing the variables
$K[\bar{z}]=K\left[z_{1}, \ldots, z_{r}\right]$, where $r=\operatorname{trdeg}\left\{f_{1}, \ldots, f_{m}\right\}$.
Definition 11 Let $\varphi: K[\bar{x}] \rightarrow K[\bar{z}]$ be a K-algebra homomorphism. We say φ is faithful to $\left\{f_{1}, \ldots, f_{m}\right\}$ if $\operatorname{trdeg}\left\{\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{m}\right)\right\}=\operatorname{trdeg}\left\{f_{1}, \ldots, f_{m}\right\}$.

Theorem 12 Let $A=K\left[f_{1}, \ldots, f_{m}\right] \subseteq K[\bar{x}]$. Then φ is faithful to $\left\{f_{1}, \ldots, f_{m}\right\}$ if and only if $\left.\varphi\right|_{A}: A \rightarrow K[\bar{z}]$ is injective (iff $A \cong K\left[\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{m}\right)\right]$).
Corollary 13 Let C be an m-variate circuit over K. Let φ be faithful to $\left\{f_{1}, \ldots, f_{m}\right\} \subseteq K[\bar{x}]$. Then, $C\left(f_{1}, \ldots, f_{m}\right)=0$ iff $C\left(\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{m}\right)\right)=0$.

Lemma 14 (Existence). Let K be an infinite field and let $f_{1}, \ldots, f_{m} \in K[\bar{x}]$ be polynomials of $\operatorname{trdeg} r$. Then there exists a linear K-algebra homomorphism $\varphi: K[\bar{x}] \rightarrow K[\bar{z}]$ which is faithful to $\left\{f_{1}, \ldots, f_{m}\right\}$.

Sketch of the proof of Theorem 1

We consider arithmetic circuits of the form $C\left(f_{1}, \ldots, f_{m}\right)$, where C is a circuit computing a polynomial in $K[\bar{y}]=K\left[y_{1}, \ldots, y_{m}\right]$ and f_{1}, \ldots, f_{m} are subcircuits computing polynomials in $K[\bar{x}]$. Thus, $C\left(f_{1}, \ldots, f_{m}\right)$ computes a polynomial in the subalgebra $K\left[f_{1}, \ldots, f_{m}\right]$. Let $C\left(f_{1}, \ldots, f_{m}\right)$ be of maximal degree d, and let f_{1}, \ldots, f_{m} be of maximal degree δ, maximal sparsity ℓ and maximal transcendence degree r. We denote the class of those circuits by $\mathcal{F}_{d, r, \delta, \ell}$.

First, we use a faithful homomorphism to transform $C\left(f_{1}, \ldots, f_{m}\right)$ into an r-variate circuit. Then, we construct a hitting set for r-variate degree- d polynomials, provided by the nonvanishing version of the Combinatorial Nullstellensatz.

Theorem 15 (Combinatorial Nullstellensatz) Let $H \subseteq K$ be a subset of size $d+1$. Then $\mathcal{H}=H^{r}$ is a hitting set for $\left\{f \in K\left[z_{1}, \ldots, z_{r}\right] \mid \operatorname{deg}(f) \leq d\right\}$.

