
Polylogarithmi Approximation for Edit Distaneand the Asymmetri Query Complexity
Alexandr Andoni, Robert Krauthgamer, Krysztof OnakTheorem 1.1 (Main): For every fixed ε > 0, there is an algorithm that approximates the edit distance

between two input strings x, y 2 Σn within a factor of (logn)O(1/ε), and runs in n1+ε time.De�nition: Consider two strings x, y 2 Σn for some alphabet Σ, and let ed(x, y) denote the edit
distance between these two strings. The computational problem is the promise problem known as
the Distance Threshold Estimation Problem (DTEP): distinguish whether ed(x, y) > R or ed(x, y) �
R/α, where R > 0 is a parameter (known to the algorithm) and α � 1 is the approximation factor.
We use DTEPβ to denote the case of R = n/β, where β � 1 may be a function of n.De�nition: In the asymmetric query model , the algorithm knows in advance (has unrestricted access
to) one of the strings, say y, and has only query access to the other string, x. The asymmetric query
complexity of an algorithm is the number of coordinates in x that the algorithm has to probe in
order to solve DTEP with success probability at least 2/3.Theorem 1.2 (Query omplexity upper bound): For every β = β(n) � 2 and fixed 0 < ε < 1 there
is an algorithm that solves DTEPβ with approximation α = (logn)

O(1/ε), and makes βnε asymmetric
queries. This algorithm runs in time O(n1+ε).
For every β = O(1) and fixed integer t � 2 there is an algorithm for DTEPβ achieving approxi-

mation α = O(n1/t), with O(logt−1 n) queries into x.Theorem 3.1: Let n � 2, β = β(n) � 2, and integer b = b(n) � 2 be such that (logb n) 2 N .
There is an algorithm solving DTEPβ with approximation α = O(b logb n) and β � (log n)O(logb n)

queries into x. The algorithm runs in n � (logn)O(logb n) time.
For every constant β = O(1) and integer t � 2, there is an algorithm for solving DTEPβ withO(n1/t) approximation and O(logt−1 n) queries. The algorithm runs in Õ(n) time.Charaterization of edit distane using E-distane

For a string x, x[s : t] denotes the substring of x comprising of x[s], . . . , x[t�1]. The characterization
may be viewed as a tree of arity b, where nodes correspond to substring x[s : s+ l]. The root is the

entire string x[1 : n + 1]. Let h
def
= logb n 2 N . Then nodes on level i for 0 � i � h correspond to

substrings x[s : s+ li] of length li
def
= n/bi.De�nition 3.2 (E-distane): Consider two strings x, y of length n � 2. Fix i 2 f0, 1, . . . , hg, s 2 Bi =f1, 1 + li, . . .g, and a position u 2 Z.

If i = h, the E-distance of x[s : s+1] to the position u is 1 if u /2 [n] or x[s] 6= y[u], and 0 otherwise.
For i 2 f0, 1, . . . , h � 1g, we recursively define the E-distance Ex,y(i, s, u) of x[s : s + li] to the

position u as follows. Partition x[s : s + li] into b blocks of length li+1 = li/b, starting at positions
s+ jli+j, where j 2 f0, 1, . . . , b� 1g. ThenEx,y(i, s, u) def= b−1X

j=0

min
rj∈Z

Ex,y(i+ 1, s+ jli+1, u+ jli+1 + rj) + jrjj.
The E-distance from x to y is Ex,y(0, 1, 1).Theorem 3.3 (Charaterization): For every b � 2 and two strings x, y 2 Σn, the E-distance between
x and y is a 6 � b

log b � log n approximation to the edit distance between x and y.

Sampling AlgorithmCherno� bound: Let Zi 2 [0; 1℄ be n independent random variables from possibly di�erent distributions. LetZ =Pi Zi and � = E [Z℄. Then for any " > 0:P[Z � (1 + ")�℄ � e− ε2µ
2+ε and P[Z � (1� ")�℄ � e− ε2µ

2 :Hoe�ding bound: Let Zi 2 [0; 1℄ be n independent random variables from possibly di�erent distributions. LetZ =Pi Zi and � = E [Z℄. Then for any t > 0, we have thatP[Z � t℄ � e−(t−2µ):De�nition 3.8: Fix � > 0 and some f 2 [1; 2℄. For a quantity � � 0, we all its (�; f)-approximator any quantity�̂ suh that �=f � � � �̂ � f� + �.If �̂1; �̂2 are (�; f)-approximators to �1; �2 respetively, �̂1 + �̂2 is a (2�; f)-approximator to �1 + �2.If �̂ ′ is a (�′; f ′)-approximator to �̂ , whih itself is a (�; f)-approximator to � , then �̂ ′ is a (�′ + f ′�; ff ′)-approximator to � .Lemma 3.9 (Sum of random variables): Fix n 2 N, � > 0 and error probability Æ. Let Zi 2 [0; �℄ be independentrandom variables, and let � > 0 be a suÆiently large absolute onstant. Then for every " 2 [0; 1℄, the summationP
i Zi is a (�� log 1/δ

ε2 ; eε)-approximator to E [Pi Zi℄, with probability � 1� Æ.Lemma 3.11 (Uniform Sampling): Fix b 2 N , " > 0, and error probability Æ > 0. Consider some aj , j 2 [b℄, suhthat aj 2 [0; 1=b℄. For arbitrary w 2 [1;1), onstrut the set J � [b℄ by subsampling eah j 2 [b℄ with probabilitypw = min(1; wb � � log 1/δ
ε2

). Then, with probability at least 1� Æ, the value 1
pw

P
j∈J aj is a (1=w; eε)-approximatorto Pj∈[b] aj , and jJ j � O(w � log 1/δε2).Lemma 3.12 (Non-uniform Sampling): Fix integers n � N , approximation " > 0, fator 1 < f < 1:1, errorprobability Æ > 0, and an \additive error bound" � > 6n="=N3. There exists a distribution W on the real interval[1; N3℄ with Ew∈W [w℄ � O(1ρ � log 1/δε3

�logN), as well as a \reonstrution algorithm" R, with the following property.Take arbitrary ai 2 [0; 1℄, for i 2 [n℄, and let � = Pi ai. Suppose one draws wi i.i.d. from W and let âi bean (1=wi; f)-approximator of ai. Then, given âi and wi for all i 2 [n℄, the algorithm R generates a (�; f � eε)-approximator to �, with probability at least 1� Æ.Algorithm 1 (Sampling Algorithm):1 Take C0 to be the root vertex (indexed (i; s) = (0; 1)), with preision w(0,1) = �.2 for eah level i = 1; : : : ; h we onstrut Ci as follows do3 for eah node v = (i� 1; s) 2 Ci−1 do4 Let wv be its preision, and set pv = wv
b � O(log3 n).5 If pv � 1 set Jv = f(i; s+ jli) j 0 � j < bg and add them to Ci eah with preision pv.6 If pv < 1, sample eah of the b hildren of v with probability pv into Jv � fig � fs; s + li; : : :g.For eah v′ 2 Jv, draw wv′ i.i.d. from W, and add node v′ to Ci with preision wv′ .7 Query the haraters x[s℄ for all (h; s) 2 Ch | this is the output of the algorithm.Algorithm 2 (Estimation Algorithm):1 For eah sampled leaf v = (h; s) 2 Ch and z 2 [n℄, we set �(v; z) = H(x[s℄; y[z℄).2 for eah level i = h� 1; : : : ; 0 and position z 2 [n℄ and node v 2 Ci with preision wv do3 For eah v′ = (i+ 1; s+ jli−1) 2 Jv for some 0 � j < b, let Æv′ def= mink:|k|≤n �(v′; z + jli+1 + k) + jkj.4 If pv � 1, then let �(v; z) =Pv′∈Jv

Æv′ .5 If pv < 1, set �(v; z) to be the output of the algorithm R on the vetor (δv′
li+1

)v′∈Jv , withpreisions (wv′)v′∈Jv , multiplied by li+1=pv.6 Output of the algorithm is �(r; 1), where r = (0; 1) is the root of the tree.Lemma 3.13 (Corretness): For b = !(1), the output of Algorithm 2 is a (n=�; 1 + o(1))-approximator to theE-distane from x to y, w.h.p.Lemma 3.15 (Sample size): The Algorithm 1 queries Qb = �(logn)O(logb n) positions of x, with probability at least1� o(1). When b = n1/t for �xed t 2 N and � = O(1), we have Qb = (logn)t−1 with probability at least 2/3.Lemma 3.16 (Near-linear time): If we useÆ′v′ = min
k=ei/logn:i∈[logn·ln(3n/β)]

(jkj+ min
k′:|k′|≤k

�(v′; z + jli+1 + k′))instead of Æv′ in Algorithm 2, the new algorithm outputs at most a 1 + o(1) fator higher value.

