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Alexandr Andoni, Robert Krauthgamer, Krysztof OnakTheorem 1.1 (Main): For every fixed ε > 0, there is an algorithm that approximates the edit distance

between two input strings x, y 2 Σn within a factor of (logn)O(1/ε), and runs in n1+ε time.De�nition: Consider two strings x, y 2 Σn for some alphabet Σ, and let ed(x, y) denote the edit
distance between these two strings. The computational problem is the promise problem known as
the Distance Threshold Estimation Problem (DTEP): distinguish whether ed(x, y) > R or ed(x, y) �
R/α, where R > 0 is a parameter (known to the algorithm) and α � 1 is the approximation factor.
We use DTEPβ to denote the case of R = n/β, where β � 1 may be a function of n.De�nition: In the asymmetric query model , the algorithm knows in advance (has unrestricted access
to) one of the strings, say y, and has only query access to the other string, x. The asymmetric query
complexity of an algorithm is the number of coordinates in x that the algorithm has to probe in
order to solve DTEP with success probability at least 2/3.Theorem 1.2 (Query omplexity upper bound): For every β = β(n) � 2 and fixed 0 < ε < 1 there
is an algorithm that solves DTEPβ with approximation α = (logn)

O(1/ε), and makes βnε asymmetric
queries. This algorithm runs in time O(n1+ε).
For every β = O(1) and fixed integer t � 2 there is an algorithm for DTEPβ achieving approxi-

mation α = O(n1/t), with O(logt−1 n) queries into x.Theorem 1.3 (Query omplexity lower bound): For a sufficiently large constant β > 1, every
algorithm that solves DTEPβ with approximation α = α(n) > 2 has asymmetric query complexity

2
Ω( logn

log a+log logn). Moreover, for every fixed non-integer t > 1, every algorithm that solves DTEPβ

with approximation α = n1/t has asymmetric query complexity Ω(log⌊t⌋ n).Theorem 3.1: Let n � 2, β = β(n) � 2, and integer b = b(n) � 2 be such that (logb n) 2 N .
There is an algorithm solving DTEPβ with approximation α = O(b logb n) and β � (log n)O(logb n)

queries into x. The algorithm runs in n � (logn)O(logb n) time.
For every constant β = O(1) and integer t � 2, there is an algorithm for solving DTEPβ withO(n1/t) approximation and O(logt−1 n) queries. The algorithm runs in Õ(n) time.Charaterization of edit distane using E-distane

For a string x, x[s : t] denotes the substring of x comprising of x[s], . . . , x[t�1]. The characterization
may be viewed as a tree of arity b, where nodes correspond to substring x[s : s+ l]. The root is the

entire string x[1 : n + 1]. Let h
def

= logb n 2 N . Then nodes on level i for 0 � i � h correspond to

substrings x[s : s+ li] of length li
def

= n/bi.De�nition 3.2 (E-distane): Consider two strings x, y of length n � 2. Fix i 2 f0, 1, . . . , hg, s 2 Bi =f1, 1 + li, . . .g, and a position u 2 Z.
If i = h, the E-distance of x[s : s+1] to the position u is 1 if u /2 [n] or x[s] 6= y[u], and 0 otherwise.
For i 2 f0, 1, . . . , h � 1g, we recursively define the E-distance Ex,y(i, s, u) of x[s : s + li] to the

position u as follows. Partition x[s : s + li] into b blocks of length li+1 = li/b, starting at positions
s+ jli+j, where j 2 f0, 1, . . . , b� 1g. ThenEx,y(i, s, u) def= b−1X

j=0

min
rj∈Z

Ex,y(i+ 1, s+ jli+1, u+ jli+1 + rj) + jrjj.
The E-distance from x to y is Ex,y(0, 1, 1).



Theorem 3.3 (Charaterization): For every b � 2 and two strings x, y 2 Σn, the E-distance between
x and y is a 6 � b

log b � log n approximation to the edit distance between x and y.De�nition (Alternative): Consider all the matching positions of E during the computation. Denote
by Z a vector of integers zi,s indexed by i 2 f0, 1, . . . , hg and s 2 Bi = f1, 1 + li, . . .g, where z0,1 = 1
by convention. The coordinate zi,s should be understood as the position to which we match the
substring x[s : s+ li]. Then we define the cost of Z as

cost(Z)
def

=

h−1X
i=0

X
s∈Bi

b−1X
j=0

jzi,s + jli+1 � zi+1,s+jli+1
j.Claim 3.4 (Alternative de�nition of E-distane): The E-distance between x and y is the minimum

of
cost(Z) +

X
s∈[n]

H(x[s], y[zh,s])

over all choices of the vector Z = (zi,s)i∈{0,1,...,h},s∈Bi
with z0,1 = 1, where H(�, �) is the Hamming

distance.Lemma 3.5: The E-distance between x and y is at most 3hb � ed(x, y).Lemma 3.6: The edit distance ed(x, y) is at most twice the E-distance between x and y.Sampling AlgorithmCherno� bound: Let Zi 2 [0, 1] be n independent random variables from possibly different distribu-
tions. Let Z =

P
i Zi and µ = E [Z]. Then for any ε > 0:P[Z � (1 + ε)µ] � e

−
ε2µ
2+ε and P[Z � (1� ε)µ] � e−

ε2µ
2 .Hoe�ding bound: Let Zi 2 [0, 1] be n independent random variables from possibly different distri-

butions. Let Z =
P

iZi and µ = E [Z]. Then for any t > 0, we have thatP[Z � t] � e−(t−2µ).De�nition 3.8: Fix ρ > 0 and some f 2 [1, 2]. For a quantity τ � 0, we call its (ρ, f)-approximator
any quantity τ̂ such that τ/f � ρ � τ̂ � fτ + ρ.
If τ̂1, τ̂2 are (ρ, f)-approximators to τ1, τ2 respectively, τ̂1+ τ̂2 is a (2ρ, f)-approximator to τ1+ τ2.
If τ̂ ′ is a (ρ′, f ′)-approximator to τ̂ , which itself is a (ρ, f)-approximator to τ , then τ̂ ′ is a (ρ′ +

f ′ρ, ff ′)-approximator to τ .Lemma 3.9 (Sum of random variables): Fix n 2 N , ρ > 0 and error probability δ. Let Zi 2 [0, ρ] be
independent random variables, and let ζ > 0 be a sufficiently large absolute constant. Then for every
ε 2 [0, 1], the summationPi Zi is a (ζρ

log 1/δ
ε2 , eε)-approximator to E [PiZi], with probability � 1�δ.Lemma 3.11 (Uniform Sampling): Fix b 2 N , ε > 0, and error probability δ > 0. Consider some aj ,

j 2 [b], such that aj 2 [0, 1/b]. For arbitrary w 2 [1,1), construct the set J � [b] by subsampling
each j 2 [b] with probability pw = min(1, wb � ζ log 1/δ

ε2 ). Then, with probability at least 1� δ, the value
1
pw

P
j∈J aj is a (1/w, e

ε)-approximator to
P

j∈[b] aj, and jJ j � O(w � log 1/δ
ε2 ).Lemma 3.12 (Non-uniform Sampling): Fix integers n � N , approximation ε > 0, factor 1 < f < 1.1,

error probability δ > 0, and an “additive error bound” ρ > 6n/ε/N3. There exists a distributionW on the real interval [1, N3] with Ew∈W [w] � O(1ρ � log 1/δ
ε3 � logN), as well as a “reconstruction

algorithm” R, with the following property.
Take arbitrary ai 2 [0, 1], for i 2 [n], and let σ = Pi ai. Suppose one draws wi i.i.d. from W

and let âi be an (1/wi, f)-approximator of ai. Then, given âi and wi for all i 2 [n], the algorithm R
generates a (ρ, f � eε)-approximator to σ, with probability at least 1� δ.


