Polylogarithmic Approximation for Edit Distance and the Asymmetric Query Complexity

Alexandr Andoni, Robert Krauthgamer, Krysztof Onak

Theorem 1.1 (Main): For every fixed $\varepsilon>0$, there is an algorithm that approximates the edit distance between two input strings $x, y \in \Sigma^{n}$ within a factor of $(\log n)^{\mathcal{O}(1 / \varepsilon)}$, and runs in $n^{1+\varepsilon}$ time.

Definition: Consider two strings $x, y \in \Sigma^{n}$ for some alphabet Σ, and let ed (x, y) denote the edit distance between these two strings. The computational problem is the promise problem known as the Distance Threshold Estimation Problem (DTEP): distinguish whether ed $(x, y)>R$ or ed $(x, y) \leq$ R / α, where $R>0$ is a parameter (known to the algorithm) and $\alpha \geq 1$ is the approximation factor. We use $\operatorname{DTEP}_{\beta}$ to denote the case of $R=n / \beta$, where $\beta \geq 1$ may be a function of n.
Definition: In the asymmetric query model, the algorithm knows in advance (has unrestricted access to) one of the strings, say y, and has only query access to the other string, x. The asymmetric query complexity of an algorithm is the number of coordinates in x that the algorithm has to probe in order to solve DTEP with success probability at least $2 / 3$.
Theorem 1.2 (Query complexity upper bound): For every $\beta=\beta(n) \geq 2$ and fixed $0<\varepsilon<1$ there is an algorithm that solves DTEP_{β} with approximation $\alpha=(\log n)^{\mathcal{O}(1 / \varepsilon)}$, and makes βn^{ε} asymmetric queries. This algorithm runs in time $\mathcal{O}\left(n^{1+\varepsilon}\right)$.

For every $\beta=\mathcal{O}(1)$ and fixed integer $t \geq 2$ there is an algorithm for DTEP_{β} achieving approximation $\alpha=\mathcal{O}\left(n^{1 / t}\right)$, with $\mathcal{O}\left(\log ^{t-1} n\right)$ queries into x.
Theorem 1.3 (Query complexity lower bound): For a sufficiently large constant $\beta>1$, every algorithm that solves DTEP_{β} with approximation $\alpha=\alpha(n)>2$ has asymmetric query complexity $2^{\Omega\left(\frac{\log n}{\log a+\log \log n}\right)}$. Moreover, for every fixed non-integer $t>1$, every algorithm that solves DTEP $_{\beta}$ with approximation $\alpha=n^{1 / t}$ has asymmetric query complexity $\Omega\left(\log ^{\lfloor t\rfloor} n\right)$.

Theorem 3.1: Let $n \geq 2, \beta=\beta(n) \geq 2$, and integer $b=b(n) \geq 2$ be such that $\left(\log _{b} n\right) \in \mathbb{N}$.
There is an algorithm solving DTEP_{β} with approximation $\alpha=\mathcal{O}\left(b \log _{b} n\right)$ and $\beta \cdot(\log n)^{\mathcal{O}\left(\log _{b} n\right)}$ queries into x. The algorithm runs in $n \cdot(\log n)^{\mathcal{O}\left(\log _{b} n\right)}$ time.

For every constant $\beta=\mathcal{O}(1)$ and integer $t \geq 2$, there is an algorithm for solving DTEP_{β} with $\mathcal{O}\left(n^{1 / t}\right)$ approximation and $\mathcal{O}\left(\log ^{t-1} n\right)$ queries. The algorithm runs in $\tilde{\mathcal{O}}(n)$ time.

Characterization of edit distance using \mathcal{E}-Distance

For a string $x, x[s: t]$ denotes the substring of x comprising of $x[s], \ldots, x[t-1]$. The characterization may be viewed as a tree of arity b, where nodes correspond to substring $x[s: s+l]$. The root is the entire string $x[1: n+1]$. Let $h \stackrel{\text { def }}{=} \log _{b} n \in \mathbb{N}$. Then nodes on level i for $0 \leq i \leq h$ correspond to substrings $x\left[s: s+l_{i}\right]$ of length $l_{i} \xlongequal{\text { def }} n / b^{i}$.
Definition 3.2 (\mathcal{E}-distance): Consider two strings x, y of length $n \geq 2$. Fix $i \in\{0,1, \ldots, h\}, s \in B_{i}=$ $\left\{1,1+l_{i}, \ldots\right\}$, and a position $u \in \mathbb{Z}$.

If $i=h$, the \mathcal{E}-distance of $x[s: s+1]$ to the position u is 1 if $u \notin[n]$ or $x[s] \neq y[u]$, and 0 otherwise.
For $i \in\{0,1, \ldots, h-1\}$, we recursively define the \mathcal{E}-distance $\mathcal{E}_{x, y}(i, s, u)$ of $x\left[s: s+l_{i}\right]$ to the position u as follows. Partition $x\left[s: s+l_{i}\right]$ into b blocks of length $l_{i+1}=l_{i} / b$, starting at positions $s+j l_{i+j}$, where $j \in\{0,1, \ldots, b-1\}$. Then

$$
\mathcal{E}_{x, y}(i, s, u) \stackrel{\text { def }}{=} \sum_{j=0}^{b-1} \min _{r_{j} \in \mathbb{Z}} \mathcal{E}_{x, y}\left(i+1, s+j l_{i+1}, u+j l_{i+1}+r_{j}\right)+\left|r_{j}\right| .
$$

The \mathcal{E}-distance from x to y is $\mathcal{E}_{x, y}(0,1,1)$.

Theorem 3.3 (Characterization): For every $b \geq 2$ and two strings $x, y \in \Sigma^{n}$, the \mathcal{E}-distance between x and y is $a 6 \cdot \frac{b}{\log b} \cdot \log n$ approximation to the edit distance between x and y.
Definition (Alternative): Consider all the matching positions of \mathcal{E} during the computation. Denote by Z a vector of integers $z_{i, s}$ indexed by $i \in\{0,1, \ldots, h\}$ and $s \in B_{i}=\left\{1,1+l_{i}, \ldots\right\}$, where $z_{0,1}=1$ by convention. The coordinate $z_{i, s}$ should be understood as the position to which we match the substring $x\left[s: s+l_{i}\right]$. Then we define the cost of Z as

$$
\operatorname{cost}(Z) \stackrel{\text { def }}{=} \sum_{i=0}^{h-1} \sum_{s \in B_{i}} \sum_{j=0}^{b-1}\left|z_{i, s}+j l_{i+1}-z_{i+1, s+j l_{i+1}}\right| .
$$

Claim 3.4 (Alternative definition of \mathcal{E}-distance): The \mathcal{E}-distance between x and y is the minimum of

$$
\operatorname{cost}(Z)+\sum_{s \in[n]} \mathrm{H}\left(x[s], y\left[z_{h, s}\right]\right)
$$

over all choices of the vector $Z=\left(z_{i, s}\right)_{i \in\{0,1, \ldots, h\}, s \in B_{i}}$ with $z_{0,1}=1$, where $\mathrm{H}(\cdot, \cdot)$ is the Hamming distance.

Lemma 3.5: The \mathcal{E}-distance between x and y is at most $3 h b \cdot \operatorname{ed}(x, y)$.
Lemma 3.6: The edit distance $\operatorname{ed}(x, y)$ is at most twice the \mathcal{E}-distance between x and y.

SAmpling Algorithm

Chernoff bound: Let $Z_{i} \in[0,1]$ be n independent random variables from possibly different distributions. Let $Z=\sum_{i} Z_{i}$ and $\mu=\mathbb{E}[Z]$. Then for any $\varepsilon>0$:

$$
\mathbb{P}[Z \geq(1+\varepsilon) \mu] \leq e^{-\frac{\varepsilon^{2} \mu}{2+\varepsilon}} \quad \text { and } \quad \mathbb{P}[Z \leq(1-\varepsilon) \mu] \leq e^{-\frac{\varepsilon^{2} \mu}{2}}
$$

Hoeffding bound: Let $Z_{i} \in[0,1]$ be n independent random variables from possibly different distributions. Let $Z=\sum_{i} Z_{i}$ and $\mu=\mathbb{E}[Z]$. Then for any $t>0$, we have that

$$
\mathbb{P}[Z \geq t] \leq e^{-(t-2 \mu)}
$$

Definition 3.8: Fix $\rho>0$ and some $f \in[1,2]$. For a quantity $\tau \geq 0$, we call its (ρ, f)-approximator any quantity $\hat{\tau}$ such that $\tau / f-\rho \leq \hat{\tau} \leq f \tau+\rho$.

If $\hat{\tau}_{1}, \hat{\tau}_{2}$ are (ρ, f)-approximators to τ_{1}, τ_{2} respectively, $\hat{\tau}_{1}+\hat{\tau}_{2}$ is a $(2 \rho, f)$-approximator to $\tau_{1}+\tau_{2}$.
If $\hat{\tau}^{\prime}$ is a $\left(\rho^{\prime}, f^{\prime}\right)$-approximator to $\hat{\tau}$, which itself is a (ρ, f)-approximator to τ, then $\hat{\tau}^{\prime}$ is a ($\rho^{\prime}+$ $f^{\prime} \rho, f f^{\prime}$)-approximator to τ.
Lemma 3.9 (Sum of random variables): Fix $n \in \mathbb{N}, \rho>0$ and error probability δ. Let $Z_{i} \in[0, \rho]$ be independent random variables, and let $\zeta>0$ be a sufficiently large absolute constant. Then for every $\varepsilon \in[0,1]$, the summation $\sum_{i} Z_{i}$ is a $\left(\zeta \frac{\log 1 / \delta}{\varepsilon^{2}}, e^{\varepsilon}\right)$-approximator to $\mathbb{E}\left[\sum_{i} Z_{i}\right]$, with probability $\geq 1-\delta$.
Lemma 3.11 (Uniform Sampling): Fix $b \in \mathbb{N}, \varepsilon>0$, and error probability $\delta>0$. Consider some a_{j}, $j \in[b]$, such that $a_{j} \in[0,1 / b]$. For arbitrary $w \in[1, \infty)$, construct the set $J \subseteq[b]$ by subsampling each $j \in[b]$ with probability $p_{w}=\min \left(1, \frac{w}{b} \cdot \zeta \frac{\log 1 / \delta}{\varepsilon^{2}}\right)$. Then, with probability at least $1-\delta$, the value $\frac{1}{p_{w}} \sum_{j \in J} a_{j}$ is a $\left(1 / w, e^{\varepsilon}\right)$-approximator to $\sum_{j \in[b]} a_{j}$, and $|J| \leq \mathcal{O}\left(w \cdot \frac{\log 1 / \delta}{\varepsilon^{2}}\right)$.
Lemma 3.12 (Non-uniform Sampling): Fix integers $n \leq N$, approximation $\varepsilon>0$, factor $1<f<1.1$, error probability $\delta>0$, and an "additive error bound" $\rho>6 n / \varepsilon / N^{3}$. There exists a distribution \mathcal{W} on the real interval $\left[1, N^{3}\right]$ with $\mathbb{E}_{w \in \mathcal{W}}[w] \leq \mathcal{O}\left(\frac{1}{\rho} \cdot \frac{\log 1 / \delta}{\varepsilon^{3}} \cdot \log N\right)$, as well as a "reconstruction algorithm" R, with the following property.

Take arbitrary $a_{i} \in[0,1]$, for $i \in[n]$, and let $\sigma=\sum_{i} a_{i}$. Suppose one draws w_{i} i.i.d. from \mathcal{W} and let \hat{a}_{i} be an $\left(1 / w_{i}, f\right)$-approximator of a_{i}. Then, given \hat{a}_{i} and w_{i} for all $i \in[n]$, the algorithm R generates a $\left(\rho, f \cdot e^{\varepsilon}\right)$-approximator to σ, with probability at least $1-\delta$.

