An upper bound on the number of Steiner triple systems
 Nathan Linial and Zur Luria
 Presented by Josef Cibulka

Definitions.

- Steiner triple system (STS) on $V \ldots$ collection of triples $T \subseteq\binom{V}{3}$ such that each pair of vertices is contained in exactly one triple from T.
- STS(n) ...number of STS's on V of size n
- $F(n)$...number of 1 -factorizations of K_{n}
- $L(n) \ldots$ number of $n \times n$ Latin squares

Observation. 1-factorizations of K_{n} and STS's correspond to special subclasses of Latin squares

Previous bounds.

$$
\begin{aligned}
\left(\frac{n}{e^{2} 3^{3 / 2}}\right)^{\frac{n^{2}}{6}} \leq S T S(n) & \leq\left(\frac{n}{e^{1 / 2}}\right)^{\frac{n^{2}}{6}} \\
\left((1+o(1)) \frac{n}{4 e^{2}}\right)^{\frac{n^{2}}{2}} \leq F(n) & \leq\left((1+o(1)) \frac{n}{e^{2}}\right)^{\frac{n^{2}}{2}} \\
L(n) & =\left((1+o(1)) \frac{n}{e^{2}}\right)^{n^{2}} .
\end{aligned}
$$

Theorem 1.

$$
S T S(n) \leq\left((1+o(1)) \frac{n}{e^{2}}\right)^{\frac{n^{2}}{6}} .
$$

Conjecture.

$$
\begin{aligned}
\operatorname{STS}(n) & =\left((1+o(1)) \frac{n}{e^{2}}\right)^{\frac{n^{2}}{6}} \\
F(n) & =\left((1+o(1)) \frac{n}{e^{2}}\right)^{\frac{n^{2}}{2}} .
\end{aligned}
$$

Proof

- Entropy of a uniformly distributed random $X \in S T S(n)$

$$
H(X)=\sum_{X \in S T S(n)}-1 /|S T S(n)| \log (1 /|S T S(n)|)=\log (|S T S(n)|)
$$

- Fix an ordering \ll of the vertices and an ordering \prec of the edges such that if $i \ll j$, then $(i, k) \prec(j, l)$ for every k and l
- $X_{i, j}$ is the t such that $\{i, j, t\}$ is a triple in X
- conditional entropy $\ldots H(X \mid Y)=\sum_{y} \operatorname{Pr}(Y=y) H(X \mid Y=y)$
- Chain rule: $H(X)=\sum_{(i, j)} H\left(X_{i, j} \mid X_{e}: e \prec\{i, j\}\right)$

Definitions.

- $\mathcal{A}_{i, j}$ is the set of values unavailable for $X_{i, j}$ due to the values of $X_{i^{\prime}, j^{\prime}}$ with $i^{\prime} \ll i$
- $\mathcal{B}_{i, j}$ is the set of values unavailable for $X_{i, j}$ due to the values of $X_{i^{\prime}, j^{\prime}}$ with $\left(i^{\prime}, j^{\prime}\right) \prec$
(i, j)
- $\mathcal{M}_{i, j}:=(V \backslash\{i, j\}) \backslash \mathcal{A}_{i, j}$
- $\mathcal{N}_{i, j}:=\mathcal{M}_{i, j} \backslash \mathcal{B}_{i, j}$
- $N_{i, j}:=\left|\mathcal{N}_{i, j}\right|$ and $M_{i, j}:=\left|\mathcal{M}_{i, j}\right|$

$$
\log (S T S(n)) \leq \sum_{(i, j)} \mathbb{E}_{X}\left[\mathbb{E}_{\prec}\left[\log \left(N_{i, j}\right)\right]\right]
$$

- $\operatorname{Fix} X, i$ and j and estimate $\mathbb{E}_{\prec}\left[\log \left(N_{i, j}\right)\right]$

Definitions.

- Let predicate $F_{i, j}$ be true if and only if $i \ll j, i \ll X_{i, j}$ and $(i, j) \prec\left(i, X_{i, j}\right)$
- Let predicate $F_{i, j}^{\prime}$ be true if and only if $i \ll j, i \ll X_{i, j}$
- Let predicate $R_{i, p}$ be true if and only if the position of i in \ll is p

$$
\mathbb{E}_{\prec}\left[\log \left(N_{i, j}\right)\right]=\operatorname{Pr}\left(F_{i, j}\right) \mathbb{E}_{\prec \mid F_{i, j}}\left[\log \left(N_{i, j}\right)\right]=\frac{1}{6} \mathbb{E}_{\prec \mid F_{i, j}}\left[\log \left(N_{i, j}\right)\right]
$$

- First, consider $M_{i, j}$ instead of $N_{i, j}$

$$
\mathbb{E}_{\prec \mid F_{i, j}}\left[\log \left(M_{i, j}\right)\right] \leq \mathbb{E}_{\ll \mid F_{i, j}^{\prime}}\left[\log \left(M_{i, j}\right)\right] \leq \mathbb{E}_{p}\left[\log \left(\mathbb{E}_{\ll \mid R_{i, p}, F_{i, j}^{\prime}}\left[M_{i, j}\right]\right)\right]
$$

Lemma 1.

$$
\operatorname{Pr}_{\ll \mid F_{i, j}^{\prime}}\left(R_{i, p}\right)=\frac{\binom{n-p}{2}}{\binom{n}{3}}
$$

Lemma 2.

$$
\mathbb{E}_{\ll \mid R_{i, p}, F_{i, j}^{\prime}}\left[M_{i, j}\right]=1+(n-p-2) \frac{\binom{n-p-3}{2}}{\binom{n-4}{2}}
$$

- By combining these lemmas and some calculations

$$
\mathbb{E}_{\prec \mid F_{i, j}}\left[\log \left(N_{i, j}\right) \leq \log (n)-1+o(1)\right.
$$

- Now we will estimate $\mathbb{E}_{\prec \mid F_{i, j}, M_{i, j}=l}\left[\log \left(N_{i, j}\right)\right]$ for every $1 \leq l \leq n$.

Definition.

- Predicate $Q_{i, j, q}$ is true if and only if (i, j) is q^{\prime} 'th among the edges (i, \star) under \prec

Lemma 3.

$$
\underset{\prec \mid F_{i, j}}{\operatorname{Pr}}\left(Q_{i, j, p}\right)=\frac{n-q}{\binom{n}{2}}
$$

Lemma 4.

$$
\mathbb{E}_{\prec \mid Q_{i, j, p}, F_{i, j}, M_{i, j}=l}\left[N_{i, j}\right]=1+(l-1) \frac{\binom{n-q-1}{2}}{\binom{n-2}{2}}
$$

- By combining these lemmas and some calculations

$$
\mathbb{E}_{\prec \mid F_{i, j}, M_{i, j}=l}\left[\log \left(N_{i, j}\right)\right] \leq \log (l)-1+o(1)
$$

- Thus

$$
\begin{aligned}
\mathbb{E}_{\prec \mid F_{i, j}}\left[\log \left(N_{i, j}\right)\right] \leq & \sum_{l=1}^{n} \underset{\prec \mid F_{i, j}}{\operatorname{Pr}}\left(M_{i, j}=l\right)(\log (l)-1+o(1))= \\
& \mathbb{E}_{\prec \mid F_{i, j}}\left[\log \left(M_{i, j}\right)\right]-1+o(1) \leq \log n-2+o(1)
\end{aligned}
$$

- And finally

$$
\log (S T S(n)) \leq \frac{1}{6} \sum_{(i, j)}(\log n-2+o(1))=\frac{\binom{n}{2}}{3}(\log n-2+o(1))
$$

