V denotes set of variables
Literal $\underline{\ell}$ over $x \in V$ is either x or \bar{x}
Clause over V is a set of literals over V.
Formula in $(k$ - $)$ CNF form \mathbf{F} is $\left(F, V=V_{\mathbf{F}}\right)$ where
F is set of clauses over V (of cardinality $\leq k)$.

Truth assignment (přiřazení) $\underline{\alpha}$ is a function $V \rightarrow\{0,1\}$. It is satisfying iff
sat $_{F}$ is the set of all satisfying assignments.
$\overline{\mathbf{F}^{[x \mapsto \alpha]}}$ denotes \mathbf{F} with x substituted by $\alpha \in\{0,1\}$. $\underline{F}^{[x]}$, resp. $\underline{\mathbf{F}^{[\bar{x}]}}$ denotes $\mathbf{F}^{[x \mapsto \alpha]}$ when $\alpha=1$, resp. 0 .
(For the rest, fix an integer $s>0$.) Literal l is $(s-$)implied iff $\exists G \subseteq F$ of cardinality $\leq s$ such that $l \in \alpha$ for all $\alpha \in \operatorname{sat}_{\left(G, V_{\mathbf{F}}\right)}$

	such x is called guessed (hádaná)
procedure $\operatorname{PPSZ}(\mathrm{F}) \quad$ such y is called forced (vynucená)	
Choose β u.r. assignment on $V_{\mathbf{F}} \quad\left(\right.$ in $\operatorname{PPS} Z_{\beta, \pi}(\mathbf{F})$)	
$\begin{aligned} & \text { Partial assignment } \alpha:=\emptyset \\ & \text { while } V_{\mathbf{F}} \neq \emptyset \text { do } \end{aligned}$	
while $\exists s$-implied $l=y \mapsto a$ do $\mathrm{F}:=\mathrm{F}$ 为	
$\alpha:=\alpha \cup\{l\}$	
$x:=$ the first variable of $V_{\mathbf{F}}$ in π	
	Lemma 10.For $\ell \in \alpha, \alpha \in$ sat
$\text { return } \alpha$	$p_{\text {guessed }}\left(\mathbf{F}^{[l]}, x, \alpha\right) \leq p_{\text {guessed }}(\mathbf{F}, x, \alpha)$

set of frozen (zmrzlých) variables $\underline{V_{\mathbf{F}}^{-}}:=\left\{x \mapsto a\right.$ is in every $\alpha \in \operatorname{sat}_{\mathbf{F}}$ for some fixed $\left.a\right\},\left|V_{\mathbf{F}}^{-}\right|=\underline{n_{\mathbf{F}}^{-}}$ set of non-frozen (nezmrzlých) variables $\underline{V_{\mathbf{F}}^{-}}:=V_{\mathbf{F}} \backslash V_{\mathbf{F}}^{-},\left|V_{\mathbf{F}}^{+}\right|=\underline{n_{\mathbf{F}}^{+}}$
set of satisfying literals $\mathrm{SL}_{F}:=\left\{\ell\right.$ literal $\mid \overline{\mathbf{F}^{[\ell]}}$ is satisfiable $\}$
procedure AssignSL(F)
(random process)
$\alpha:=\emptyset$
while $V_{\mathrm{F}} \neq \emptyset$ do
Choose $\ell \in \mathrm{SL}_{\mathbf{F}}$
$\alpha:=\alpha \cup\{\ell\}$
$\mathbf{F}:=\mathbf{F}^{[\ell]}$
return α
$p(\mathbf{F}, \alpha):=\operatorname{Pr}[\operatorname{AssignSL}(F)=\alpha]$

Theorem 15. $p_{\text {success }}(\mathbf{F}) \geq 2^{-c_{\mathbf{F}}}$.

$$
\begin{gathered}
S:=S_{k}+\epsilon_{k}(s) \\
\underline{c_{\mathbf{F}, x}}:= \begin{cases}S, & x \in V_{\mathbf{F}}^{+} ; \\
\sum_{\alpha \in \text { sat }_{\mathbf{F}}} p(\mathbf{F}, \alpha) p_{\text {guessed }}(\mathbf{F}, x, \alpha), & x \in V_{\mathbf{F}}^{-}\end{cases} \\
\qquad \underline{c_{\mathbf{F}}}:=\sum_{x \in V_{\mathbf{F}}} c_{\mathbf{F}, x}
\end{gathered}
$$

Lemma 16. $\ell^{\prime}=x^{\prime} \mapsto \alpha\left(x^{\prime}\right) \in \alpha, \alpha \in \operatorname{sat}_{\mathbf{F}}$:

$$
p\left(\mathbf{F}^{\left[\ell^{\prime}\right]}, \alpha\right) \geq p(\mathbf{F}, \alpha)
$$

if x^{\prime} is frozen
and $c_{\mathbf{F}}^{\left[\ell^{\prime}\right]} \leq c_{\mathbf{F}}$

Theorem 17. $\forall \mathbf{F} s$-implication free, $\ell \in \mathrm{SL}_{\mathbf{F}}$:
procedure $\operatorname{PPSZ}^{\prime}(\mathbf{F})$
$\alpha:=\emptyset$
Use implications
Choose $x \in V_{\mathbf{F}}$
Choose $a \in\{0,1\}$
return $\alpha \cup\{x \mapsto a\} \cup \operatorname{PPSZ}^{\prime}\left(\mathbf{F}^{[x \mapsto a]}\right)$

$$
E_{\ell}\left[c_{\mathbf{F}^{[\ell]}}\right] \leq c_{\mathbf{F}}-n_{\mathbf{F}}^{+} \frac{2 S}{\left|\mathrm{SL}_{\mathbf{F}}\right|}-n_{\mathbf{F}}^{-} \frac{1}{\left|\mathrm{SL}_{\mathbf{F}}\right|}
$$

