Saving Space by Algebraization

Daniel Lokshtanov, Jesper Nederlof

Definitions: For an integer i let us \mathbb{N}_{i} denote the set of integers $\{0, \ldots, i-1\}$ and \mathbb{Z}_{i} ring of integers modulo i. For sets A and B, the set $A[B]$ is the set of all functions $f: B \rightarrow A$. For a vector $v \in \mathbb{N}^{d}$ the set \mathbb{N}_{v} is $\mathbb{N}_{v[0]} \times \mathbb{N}_{v[1]} \times \ldots \times \mathbb{N}_{v[d-1]}$.

The vectors are instantiated using \langle and \rangle. The $=, \leq$ and $<$ relations for vectors are pointwise. The absolute value of a complex number u and the length of a vector v is denoted by $\|u\|$ and $\|v\|$. When working with rings and semi-rings, + denotes addition and \cdot multiplication. For vectors, • means the dot product. When working with elements of $A[B]$ where A comes with addition and multiplication, we define pointwise addition operator \oplus and pointwise multiplication operator \odot as follows: $\forall x, y \in A[B], b \in B:(x \oplus y)[b]=x[b]+y[b]$ and $(x \odot y)[b]=x[b] \cdot y[b]$.

We use Iverson's bracket notation, so for a predicate $b,[b]$ is 1 if b is true and 0 otherwise. We will use this notation for singleton constants, in a form of $[X=y] v$, which is v if $X=y$ and 0 otherwise.

For a set S and binary operators O_{1}, O_{2} on S, a circuit C over ($S ; O_{1}, O_{2}$) is a directed acyclic graph with parallel arcs, such that every node is either a constant gate, O_{1} gate or O_{2} gate. The constant gates have indegree 0 and are labelled with elements of S. The O_{i} gates have indegree 2 and its two in-neighbours are its children. The output of a constant gate is the element it is labelled with, the output of an O_{i} gate is the result of performing O_{i} on its two children. One gate c of C is marked as output gate and the output of C is the output of c. The depth $\Delta(C)$ is the size of the longest path, and the size of C is the size of the underlying graph.

Definition: For every $n \in \mathbb{N}^{d}$, the Discrete Fourier Transform is a linear transform $\mathcal{F}: \mathbb{C}\left[\mathbb{N}_{n}\right] \rightarrow \mathbb{C}\left[\mathbb{N}_{n}\right]$. Let $t \in \mathbb{C}^{d}$ so that $t[j]=2 \pi i / n[j]$ and let $N=\prod_{i=0}^{d-1} n[i]$. Then for $a \in \mathbb{C}\left[\mathbb{N}_{n}\right]$ we define $\mathcal{F}(a)$ and $\mathcal{F}^{-1}(a)$ as

$$
\mathcal{F}(a)[x]=\sum_{j \in \mathbb{N}_{n}} e^{(x \odot t) \cdot j} a[j], \quad \quad \mathcal{F}^{-1}(a)[x]=\frac{1}{N} \sum_{j \in \mathbb{N}_{n}} e^{-(x \odot t) \cdot j} a[j] .
$$

Definition: For $a, b \in \mathbb{Z}\left[\mathbb{N}_{n}\right]$ we define convolution of $a, b, a \otimes b$, as

$$
(a \otimes b)[x]=\sum_{0 \leq j \leq x} a[j] b[x-j]
$$

The convolution overflows if there are vectors $x, y \in \mathbb{N}_{n}$, such that $a[x] \neq 0, b[y] \neq 0$ and $x+y \nless n$.
Theorem 4.2: For $a, b \in \mathbb{C}\left[\mathbb{N}_{n}\right]$ such that $a \otimes b$ does not overflow, $\mathcal{F}(a \otimes b)=\mathcal{F}(a) \odot F(b)$.
Theorem 4.3: Let $n \in \mathbb{N}^{d}, N=\left|\mathbb{N}_{n}\right|$, and C be a circuit over $\left(\mathbb{Z}\left[\mathbb{N}_{n}\right] ; \oplus, \otimes\right)$ with only singleton constants. Suppose that for any gate $c \in C: \forall x \in \mathbb{N}_{n},|c[x]| \leq m$ and that no convolution gate overflows. Let f be the output of C. Then, given n, m and $g \in \mathbb{N}_{n}$ we can compute $f[g]$ in time $\tilde{\mathcal{O}}((|C| N \log N) \log (N m) \Delta(C))$ and space $\mathcal{O}((|C|+\log N) \log (N m) \Delta(C))$.
Claim: Let C be a circuit over $(\mathbb{C} ;+, \cdot)$ and $m, \ell \in \mathbb{N}$, such that for any gate $v \in C:\|v\| \leq m$. Suppose that $2^{\ell} \cdot(4 m)^{\Delta(C)} \leq 1$. Then if we are given estimations of constants with ℓ-bit precision, we can compute the estimation of result with error at most $2^{\ell} \cdot(4 m)^{\Delta(C)}$.
Problem SUBSET SUM
Instance: Set S of positive integers w_{1}, \ldots, w_{n}, an integer w.
Question: Does there exist a subset $S^{\prime} \subseteq S$ such that $\sum_{w_{i} \in S^{\prime}} w_{i}=w$?

$$
\begin{gathered}
s_{1}=[x=0] \oplus\left[x=w_{1}\right] \\
s_{i}=s_{i-1} \oplus\left(s_{i-1} \otimes\left[x=w_{i}\right]\right)=s_{i-1} \otimes\left([x=0] \oplus\left[x=w_{i}\right]\right) \\
s_{n}=\left([x=0] \oplus\left[x=w_{1}\right]\right) \otimes\left([x=0] \oplus\left[x=w_{2}\right]\right) \otimes \ldots \otimes\left([x=0] \oplus\left[x=w_{n}\right]\right)
\end{gathered}
$$

Problem Knapsack

Instance: Set S of n pairs of positive integers $\left(v_{1}, w_{1}\right), \ldots,\left(v_{n}, w_{n}\right)$, two positive integers v, w.
Question: Does there exist a subset $S^{\prime} \subseteq \mathbb{N}_{n}$ such that $\sum_{i \in S^{\prime}} v_{i} \geq v$ and $\sum_{i \in S^{\prime}} w_{i} \leq w$?

$$
\begin{gathered}
s_{1}=[x=\langle v, 0\rangle] \oplus\left[x=\left\langle v-v_{1}, w_{1}\right\rangle\right] \\
s_{i}=s_{i-1} \otimes\left([x=\langle v, 0\rangle] \oplus\left[x=\left\langle v-v_{i}, w_{i}\right\rangle\right]\right) \\
\left(s_{n} \otimes[x \leq\langle n v-v, w\rangle]\right)[\langle n v-v, w\rangle]
\end{gathered}
$$

where $[x \leq p]=[x \leq\lfloor p / 2\rfloor] \otimes[x \leq\lfloor p / 2\rfloor] \oplus[x=p]$ and $[x \leq\langle a, b\rangle]=[x \leq\langle a, 0\rangle] \otimes[x \leq\langle 0, b\rangle]$.

Definitions: Let V be a set and \mathcal{R} be a ring. We will consider circuits over ($\left.\mathcal{R}\left[2^{V}\right] ; \oplus, \diamond\right)$, where \diamond is the union product defined as

$$
(a \diamond b)[Y]=\sum_{A \cup B=Y} a[A] b[B] .
$$

For $f \in \mathcal{R}\left[2^{V}\right]$, the zeta-transform ζf and the Möbius-transform μf are defined as follows:

$$
\zeta f[Y]=\sum_{X \subseteq Y} f[Y], \quad \quad \mu f[Y]=\sum_{x \subseteq Y}(-1)^{|Y \backslash X|} f[X]
$$

Lemma 5.1: For any function $f \in \mathcal{R}\left[2^{V}\right]$ holds that $\mu(\zeta f)=f$.
Lemma 5.2: For any functions $f, g \in \mathcal{R}\left[2^{V}\right]$ holds that $\zeta(f \diamond g)=(\zeta f) \odot(\zeta g)$.
Lemma 5.3: Let C be a circuit over ($\left.\mathcal{R}\left[2^{V}\right] ; \oplus, \diamond\right)$ and outputs s. Then there is a polynomial time algorithm that, given $Y \subseteq V$, creates circuit C^{\prime} over $(\mathbb{R} ;+, \cdot)$ with the same underlying graph, such that the output of C^{\prime} is $(\zeta s)[Y]$.
Definition: Let V be a set, \mathcal{R} a ring and $f, g \in \mathcal{R}\left[2^{V}\right]$. The operator subset convolution $*$ is defined as

$$
(f * g)[Y]=\sum_{X \subseteq Y} f[X] g[Y \backslash X] .
$$

Theorem 5.1: Let v be a set and let C be a circuit over $\left(\mathbb{Z}\left[2^{V}\right] ; \oplus, *\right)$. Suppose C outputs s, all its constants are singletons and m is an integer such that $s[V] \leq m$. Then, given C and $m, s[V]$ can be computed using $\mathcal{O}^{*}\left(2^{|V|}\right)$ and $\mathcal{O}(|V||C| \log m)$ space.
Problem Unweighted Steiner Tree
Instance: A graph $G=(V, E), T \subseteq V$, an integer $t \leq|V|$.
Question: Does there exist a subtree $\left(V^{\prime}, E^{\prime}\right)$ of G such that $\left|V^{\prime}\right| \leq t$ and $T \subseteq V^{\prime}$?

$$
\begin{aligned}
& f_{1}^{v}=[X=\emptyset] \text { for } v \notin T f_{1}^{v}=[X=\{v\}] \oplus[X=\emptyset] \text { for } v \in T \\
& f_{i}^{v}=\sum_{j=1}^{i-1} \sum_{w \in N(v)} f_{j}^{w} * f_{i-j}^{v}
\end{aligned}
$$

Definition: Let \mathcal{M} be a min sum semi-ring consisting of the set $\mathbb{N} \cup \infty$ and operations min and + . We embed M in $\mathbb{Z}[\mathbb{N}]$ with \oplus and \otimes. We represent $a \in \mathcal{M}$ by $a^{\prime} \in \mathbb{Z}[\mathbb{N}$ such that $a[i]>0$ for $i=a$ and $a[i]=0$ for $i<a$. Let b^{\prime}, c^{\prime} and d^{\prime} represent b, c and d, respectively. Then

$$
\min \{a, b\}=c, a+b=d \Longleftrightarrow a^{\prime} \oplus b^{\prime}=c^{\prime}, a^{\prime} \otimes b^{\prime}=d^{\prime}
$$

Observation: For min sum semi-ring \mathcal{M} the definition of $*_{\mathcal{M}}$ introduces min sum subset convolution, $\left(f *_{\mathcal{M}} g\right)[X]=\min _{W \subseteq X} f[W]+g[X \backslash W]$.
Theorem 6.1: Let V be a set and w an integer. Let C be a circuit over ($\mathbb{N}\left[2^{V}\right] ; \min , *_{\mathcal{M}}$). Let D be obtained from C by replacing all min with max gates and $*_{\mu}$ with \oplus gates and all constants with a table containing $w+1$ in all entries. Suppose all constants of C are singletons and C, D outputs s, t, respectively. Then it can be decided whether $s[V] \leq w$ using $\mathcal{O}^{*}\left(2^{|V|} u\right)$ time and polynomial space, where $t[Y] \leq u$ for every $Y \subseteq V$.
Problem Travelling Salesman Problem
Instance: A graph $G=(V, E)$, vertex s, function $\omega: V \times V \rightarrow\{1, \ldots, d\}$ and an integer $t \leq|V| d$.
Question: Is there a Hamiltonian cycle $E^{\prime} \subseteq E$ of weight at most t ?

$$
\begin{gathered}
f_{0}^{v}=[X=\emptyset] \omega(s, v) \\
f_{i}^{v}=\min _{u \in N(v)}\left(f_{i-1}^{u} * \mathcal{M}[X=\{v\}]\right)+\omega(u, v)
\end{gathered}
$$

Problem Weighted Steiner Tree

Instance: A graph $G=(V, E)$ with weight function $\omega: E \rightarrow\{1, \ldots, d\}, T \subseteq V$ and an integer $t \leq|V| d$. Question: Does there exist a subtree (V^{\prime}, E^{\prime}) of G such that $\sum_{e \in E^{\prime}} \omega(e) \leq t$ and $T \subseteq V^{\prime}$?

$$
\begin{gathered}
f_{1}^{v}=[X=\emptyset] \text { for } v \notin T \\
f_{1}^{v}=[X=\{v\}] \min [X=\emptyset] \text { for } v \in T \\
f_{i}^{v}=\min _{j=1}^{i-1} \min _{w \in N(v)} f_{j}^{w} *_{\mathcal{M}} f_{i-j}^{v}+\omega(v w)
\end{gathered}
$$

