Saving Space by Algebraization

Daniel Lokshtanov, Jesper Nederlof

Definitions: For an integer *i* let us \mathbb{N}_i denote the set of integers $\{0, \ldots, i-1\}$ and \mathbb{Z}_i ring of integers modulo *i*. For sets *A* and *B*, the set *A*[*B*] is the set of all functions $f : B \to A$. For a vector $v \in \mathbb{N}^d$ the set \mathbb{N}_v is $\mathbb{N}_{v[0]} \times \mathbb{N}_{v[1]} \times \ldots \times \mathbb{N}_{v[d-1]}$.

The vectors are instantiated using $\langle \text{ and } \rangle$. The =, \leq and \langle relations for vectors are pointwise. The *absolute value* of a complex number u and the length of a vector v is denoted by ||u|| and ||v||. When working with rings and semi-rings, + denotes addition and \cdot multiplication. For vectors, \cdot means the *dot product*. When working with elements of A[B] where A comes with addition and multiplication, we define *pointwise addition* operator \oplus and *pointwise multiplication* operator \odot as follows: $\forall x, y \in A[B], b \in B : (x \oplus y)[b] = x[b] + y[b]$ and $(x \odot y)[b] = x[b] \cdot y[b]$.

We use *Iverson's bracket notation*, so for a predicate b, [b] is 1 if b is true and 0 otherwise. We will use this notation for singleton constants, in a form of [X = y]v, which is v if X = y and 0 otherwise.

For a set S and binary operators O_1, O_2 on S, a *circuit* C over $(S; O_1, O_2)$ is a directed acyclic graph with parallel arcs, such that every node is either a *constant* gate, O_1 gate or O_2 gate. The constant gates have indegree 0 and are labelled with elements of S. The O_i gates have indegree 2 and its two in-neighbours are its *children*. The *output* of a constant gate is the element it is labelled with, the output of an O_i gate is the result of performing O_i on its two children. One gate c of C is marked as *output gate* and the output of C is the output of c. The *depth* $\Delta(C)$ is the size of the longest path, and the *size* of C is the size of the underlying graph.

Definition: For every $n \in \mathbb{N}^d$, the Discrete Fourier Transform is a linear transform $\mathcal{F} : \mathbb{C}[\mathbb{N}_n] \to \mathbb{C}[\mathbb{N}_n]$. Let $t \in \mathbb{C}^d$ so that $t[j] = 2\pi i/n[j]$ and let $N = \prod_{i=0}^{d-1} n[i]$. Then for $a \in \mathbb{C}[\mathbb{N}_n]$ we define $\mathcal{F}(a)$ and $\mathcal{F}^{-1}(a)$ as

$$\mathcal{F}(a)[x] = \sum_{j \in \mathbb{N}_n} e^{(x \odot t) \cdot j} a[j], \qquad \qquad \mathcal{F}^{-1}(a)[x] = \frac{1}{N} \sum_{j \in \mathbb{N}_n} e^{-(x \odot t) \cdot j} a[j].$$

Definition: For $a, b \in \mathbb{Z}[\mathbb{N}_n]$ we define *convolution of* $a, b, a \otimes b$, as

$$(a \otimes b)[x] = \sum_{0 \le j \le x} a[j]b[x-j]$$

The convolution overflows if there are vectors $x, y \in \mathbb{N}_n$, such that $a[x] \neq 0$, $b[y] \neq 0$ and $x + y \not < n$.

Theorem 4.2: For $a, b \in \mathbb{C}[\mathbb{N}_n]$ such that $a \otimes b$ does not overflow, $\mathcal{F}(a \otimes b) = \mathcal{F}(a) \odot F(b)$.

Theorem 4.3: Let $n \in \mathbb{N}^d$, $N = |\mathbb{N}_n|$, and C be a circuit over $(\mathbb{Z}[\mathbb{N}_n]; \oplus, \otimes)$ with only singleton constants. Suppose that for any gate $c \in C : \forall x \in \mathbb{N}_n, |c[x]| \leq m$ and that no convolution gate overflows. Let f be the output of C. Then, given n, m and $g \in \mathbb{N}_n$ we can compute f[g] in time $\tilde{\mathcal{O}}((|C|N\log N)\log(Nm)\Delta(C))$ and space $\mathcal{O}((|C| + \log N)\log(Nm)\Delta(C))$.

Claim: Let C be a circuit over $(\mathbb{C}; +, \cdot)$ and $m, \ell \in \mathbb{N}$, such that for any gate $v \in C : ||v|| \leq m$. Suppose that $2^{\ell} \cdot (4m)^{\Delta(C)} \leq 1$. Then if we are given estimations of constants with ℓ -bit precision, we can compute the estimation of result with error at most $2^{\ell} \cdot (4m)^{\Delta(C)}$.

Problem SUBSET SUM

Instance: Set S of positive integers w_1, \ldots, w_n , an integer w. Question: Does there exist a subset $S' \subseteq S$ such that $\sum_{w_i \in S'} w_i = w$? $s_1 = [x = 0] \oplus [x = w_1]$ $s_2 = s_2 \oplus (s_2 \oplus [x = w]) = s_2 \oplus ([x = 0] \oplus [x = w])$

$$s_i = s_{i-1} \oplus (s_{i-1} \otimes [x = w_i]) = s_{i-1} \otimes ([x = 0] \oplus [x = w_i])$$

$$s_n = ([x = 0] \oplus [x = w_1]) \otimes ([x = 0] \oplus [x = w_2]) \otimes \dots \otimes ([x = 0] \oplus [x = w_n])$$

Problem KNAPSACK

Instance: Set S of n pairs of positive integers $(v_1, w_1), \ldots, (v_n, w_n)$, two positive integers v, w. Question: Does there exist a subset $S' \subseteq \mathbb{N}_n$ such that $\sum_{i \in S'} v_i \ge v$ and $\sum_{i \in S'} w_i \le w$?

$$s_{1} = [x = \langle v, 0 \rangle] \oplus [x = \langle v - v_{1}, w_{1} \rangle]$$

$$s_{i} = s_{i-1} \otimes ([x = \langle v, 0 \rangle] \oplus [x = \langle v - v_{i}, w_{i} \rangle])$$

$$(s_{n} \otimes [x \leq \langle nv - v, w \rangle])[\langle nv - v, w \rangle]$$

where $[x \le p] = [x \le \lfloor p/2 \rfloor] \otimes [x \le \lfloor p/2 \rfloor] \oplus [x = p]$ and $[x \le \langle a, b \rangle] = [x \le \langle a, 0 \rangle] \otimes [x \le \langle 0, b \rangle]$.

Definitions: Let V be a set and \mathcal{R} be a ring. We will consider circuits over $(\mathcal{R}[2^V]; \oplus, \diamond)$, where \diamond is the *union* product defined as

$$(a\diamond b)[Y] = \sum_{A\cup B=Y} a[A]b[B].$$

For $f \in \mathcal{R}[2^V]$, the zeta-transform ζf and the Möbius-transform μf are defined as follows:

$$\zeta f[Y] = \sum_{X \subseteq Y} f[Y], \qquad \qquad \mu f[Y] = \sum_{x \subseteq Y} (-1)^{|Y \setminus X|} f[X]$$

Lemma 5.1: For any function $f \in \mathcal{R}[2^V]$ holds that $\mu(\zeta f) = f$.

Lemma 5.2: For any functions $f, g \in \mathcal{R}[2^V]$ holds that $\zeta(f \diamond g) = (\zeta f) \odot (\zeta g)$.

Lemma 5.3: Let C be a circuit over $(\mathcal{R}[2^V]; \oplus, \diamond)$ and outputs s. Then there is a polynomial time algorithm that, given $Y \subseteq V$, creates circuit C' over $(\mathbb{R}; +, \cdot)$ with the same underlying graph, such that the output of C' is $(\zeta s)[Y]$.

Definition: Let V be a set, \mathcal{R} a ring and $f, g \in \mathcal{R}[2^V]$. The operator subset convolution * is defined as

$$(f*g)[Y] = \sum_{X \subseteq Y} f[X]g[Y \setminus X].$$

Theorem 5.1: Let v be a set and let C be a circuit over $(\mathbb{Z}[2^V]; \oplus, *)$. Suppose C outputs s, all its constants are singletons and m is an integer such that $s[V] \leq m$. Then, given C and m, s[V] can be computed using $\mathcal{O}^*(2^{|V|})$ and $\mathcal{O}(|V||C|\log m)$ space.

Problem UNWEIGHTED STEINER TREE

Instance: A graph $G = (V, E), T \subseteq V$, an integer $t \leq |V|$.

Question: Does there exist a subtree (V', E') of G such that $|V'| \leq t$ and $T \subseteq V'$?

$$\begin{aligned} f_1^v &= [X = \emptyset] \text{ for } v \notin T \\ f_1^v &= \sum_{j=1}^{i-1} \sum_{w \in N(v)} f_j^w * f_{i-j}^v \end{aligned} \qquad f_1^v = [X = \{v\}] \oplus [X = \emptyset] \text{ for } v \in T \end{aligned}$$

Definition: Let \mathcal{M} be a min sum semi-ring consisting of the set $\mathbb{N} \cup \infty$ and operations min and +. We embed M in $\mathbb{Z}[\mathbb{N}]$ with \oplus and \otimes . We represent $a \in \mathcal{M}$ by $a' \in \mathbb{Z}[\mathbb{N}]$ such that a[i] > 0 for i = a and a[i] = 0 for i < a. Let b', c' and d' represent b, c and d, respectively. Then

$$\min\{a,b\} = c, a+b = d \iff a' \oplus b' = c', a' \otimes b' = d'$$

Observation: For min sum semi-ring \mathcal{M} the definition of $*_{\mathcal{M}}$ introduces min sum subset convolution, $(f*_{\mathcal{M}}g)[X] = \min_{W \subseteq X} f[W] + g[X \setminus W].$

Theorem 6.1: Let V be a set and w an integer. Let C be a circuit over $(\mathbb{N}[2^V]; \min, *_{\mathcal{M}})$. Let D be obtained from C by replacing all min with max gates and $*_{\mathcal{M}}$ with \oplus gates and all constants with a table containing w + 1 in all entries. Suppose all constants of C are singletons and C, D outputs s, t, respectively. Then it can be decided whether $s[V] \leq w$ using $\mathcal{O}^*(2^{|V|}u)$ time and polynomial space, where $t[Y] \leq u$ for every $Y \subseteq V$.

Problem TRAVELLING SALESMAN PROBLEM

Instance: A graph G = (V, E), vertex s, function $\omega : V \times V \to \{1, \ldots, d\}$ and an integer $t \leq |V|d$. Question: Is there a Hamiltonian cycle $E' \subseteq E$ of weight at most t?

$$f_0^v = [X = \emptyset]\omega(s, v)$$

$$f_i^v = \min_{u \in N(v)} (f_{i-1}^u *_{\mathcal{M}} [X = \{v\}]) + \omega(u, v)$$

Problem WEIGHTED STEINER TREE

Instance: A graph G = (V, E) with weight function $\omega : E \to \{1, \dots, d\}, T \subseteq V$ and an integer $t \leq |V|d$. Question: Does there exist a subtree (V', E') of G such that $\sum_{e \in E'} \omega(e) \leq t$ and $T \subseteq V'$?

$$f_1^v = [X = \emptyset] \text{ for } v \notin T$$

$$f_1^v = [X = \{v\}] \min[X = \emptyset] \text{ for } v \in T$$

$$f_i^v = \min_{j=1}^{i-1} \min_{w \in N(v)} f_j^w *_{\mathcal{M}} f_{i-j}^v + \omega(vw)$$