Sorting under Partial Information (without the Ellipsoid Algorithm)

J. Cardinal, S. Fiorini, G. Joret, R. M. Jungers, J. I. Munro

November 25, 2010

Presented by Marek Tesař

BASIC DEFINITIONS:

Number of linear extensions:

Let P be a partially ordered set (poset). Denote e(P) the number of linear extensions of P.

Problem definition:

Let $V = \{v_1, v_2, \ldots, v_n\}$ be a set equipped with an unknown linear order \leq . Given a subset of the relations $v_i \leq v_j$ determine the complete linear order by queries of the form: "is $v_i \leq v_j$?"

Entropy definition:

Let G be a grah. Then define $STAB(G) := conv\{\chi^S \in \mathbb{R}^{V(G)} : S \text{ stable set in } G\}$ where χ^S is characteristic vector of the subset S. The entropy of G is defined as:

$$H(G) := \min_{x \in STAB(G)} -\frac{1}{n} \sum_{v \in V(G)} \log x_v$$

Definition of (in)comparability graph:

Let P be a poset. Then define comparability graph G(P) as a graph with vertex set equal to ground set of P and two distinct vertices v and w are adjacent in G(P) whenever they are comparable in P. The incomparability graph $\overline{G}(P)$ is defined as complement of G(P). We denote by H(P) the entropy of G(P) and by $H(\overline{P})$ the entropy of $\overline{G}(P)$.

MAIN RESULTS:

Algorithm	Global complexity	Number of comparisons
K&K	$O(n\log n \cdot EA(n))$	$\leq 9.82 \cdot \log e(P)$
ALGORITHM 1	$O(n^2)$	$O(\log n \cdot \log e(P))$
ALGORITHM 2	$O(n^{2.5})$	$\leq (1+\varepsilon)\log e(P) + O_{\varepsilon}(n)$
ALGORITHM 3	$O(n^{2.5})$	$\leq 15.09 \log e(P)$

ALGORITHMS AND NECESARY LEMMAS AND THEOREMS:

Lemma 1 For any poset P of order n,

 $\log e(P) \le nH(\bar{P}) \le \min\{\log e(P) + \log e \cdot n, c_1 \log e(P)\}\$

where $c_1 = (1 + 7 \log e) \simeq 11.1$.

Theorem 1 For any poset P of order n,

$$nH(\bar{P}) \le 2\log e(P)$$

Lemma 2 Assume G is a perfect graph of order n, then

$$H(G) + H(\bar{G}) = \log n$$

Lemma 3 In any poset P of order n that is not a chain there are a, b incomparable such that

$$\max\{nH(P(a < b)), nH(P(b < a))\} \le nH(P) - c_2$$

where $c_2 = \log(1 + 17/112) \simeq 0.2$.

Algorithm 1:

phase 1: find a maximum chain $C \subset P$

phase 2: while $P - C \neq \emptyset$, remove an element of P - C and insert it in C with a binary search

phase 3: return C

Lemma 4 Let P be a poset of order n and let C be a maximum chain in P. Then $|C| \geq 2^{-H(P)}n$.

Lemma 5 For all $x \in \mathbb{R}$, $1 - 2^{-x} \leq \ln 2 \cdot x$.

Theorem 2 Let G be a perfect graph on n vertces and denote by \tilde{g} the entropy of an arbitrary greedy point in STAB(G). Then for any $\varepsilon > 0$,

$$\widetilde{g} \le (1+\varepsilon)H(G) + (1+\varepsilon)\log(1+\frac{1}{\varepsilon})$$

Algorithm 2:

phase 1: find a greedy chain decomposition C_1, \ldots, C_k of $P; C \leftarrow \{C_1, \ldots, C_k\}$ phase 2: while |C| > 1

> pick the two smallest chains A and B in C merge A and B into a chain D, linearly $C \leftarrow C \setminus \{A, B\} \cup \{D\}$

phase 3: return the chain in ${\cal C}$

Theorem 3 The query complexity of Algorithm 2 is for every $\varepsilon > 0$ at most

 $(\widetilde{g}+1)n \le (1+\varepsilon)\log e(P) + O_{\varepsilon}(n)$