Sorting under Partial Information (without the Ellipsoid Algorithm)

J. Cardinal, S. Fiorini, G. Joret, R. M. Jungers, J. I. Munro

November 25, 2010

Presented by Marek Tesař

BASIC DEFINITIONS:

Number of linear extensions:

Let P be a partially ordered set (poset). Denote $e(P)$ the number of linear extensions of P.

Problem definition:

Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set equipped with an unknown linear order \leq. Given a subset of the relations $v_{i} \leq v_{j}$ determine the complete linear order by queries of the form: "is $v_{i} \leq v_{j}$?"

Entropy definition:

Let G be a grah. Then define

$$
S T A B(G):=\operatorname{conv}\left\{\chi^{S} \in \mathbb{R}^{V(G)}: S \text { stable set in } G\right\}
$$

where χ^{S} is characteristic vector of the subset S. The entropy of G is defined as:

$$
H(G):=\min _{x \in S T A B(G)}-\frac{1}{n} \sum_{v \in V(G)} \log x_{v}
$$

Definition of (in)comparability graph:

Let P be a poset. Then define comparability graph $G(P)$ as a graph with vertex set equal to ground set of P and two distinct vertices v and w are adjacent in $G(P)$ whenever they are comparable in P. The incomparability graph $\bar{G}(P)$ is defined as complement of $G(P)$. We denote by $H(P)$ the entropy of $G(P)$ and by $H(\bar{P})$ the entropy of $\bar{G}(P)$.

MAIN RESULTS:

Algorithm	Global complexity	Number of comparisons
K\&K	$O(n \log n \cdot E A(n))$	$\leq 9.82 \cdot \log e(P)$
ALGORITHM 1	$O\left(n^{2}\right)$	$O(\log n \cdot \log e(P))$
ALGORITHM 2	$O\left(n^{2.5}\right)$	$\leq(1+\varepsilon) \log e(P)+O_{\varepsilon}(n)$
ALGORITHM 3	$O\left(n^{2.5}\right)$	$\leq 15.09 \log e(P)$

ALGORITHMS AND NECESARY LEMMAS AND THEOREMS:

Lemma 1 For any poset P of order n, $\log e(P) \leq n H(\bar{P}) \leq \min \left\{\log e(P)+\log e \cdot n, c_{1} \log e(P)\right\}$
where $c_{1}=(1+7 \log e) \simeq 11.1$.
Theorem 1 For any poset P of order n,

$$
n H(\bar{P}) \leq 2 \log e(P)
$$

Lemma 2 Assume G is a perfect graph of order n, then

$$
H(G)+H(\bar{G})=\log n
$$

Lemma 3 In any poset P of order n that is not a chain there are a, b incomparable such that

$$
\max \{n H(\overline{P(a<b)}), n H(\overline{P(b<a)})\} \leq n H(\bar{P})-c_{2}
$$

where $c_{2}=\log (1+17 / 112) \simeq 0.2$.

Algorithm 1:

phase 1: find a maximum chain $C \subset P$
phase 2: while $P-C \neq \emptyset$, remove an element of $P-C$ and insert it in C with a binary search
phase 3: return C
Lemma 4 Let P be a poset of order n and let C be a maximum chain in P. Then $|C| \geq 2^{-H(P)} n$.

Lemma 5 For all $x \in \mathbb{R}, 1-2^{-x} \leq \ln 2 \cdot x$.
Theorem 2 Let G be a perfect graph on n vertces and denote by \widetilde{g} the entropy of an arbitrary greedy point in $\operatorname{STAB}(G)$. Then for any $\varepsilon>0$,

$$
\widetilde{g} \leq(1+\varepsilon) H(G)+(1+\varepsilon) \log \left(1+\frac{1}{\varepsilon}\right)
$$

Algorithm 2:

phase 1: find a greedy chain decomposition C_{1}, \ldots, C_{k} of $P ; C \leftarrow\left\{C_{1}, \ldots, C_{k}\right\}$
phase 2: while $|C|>1$
pick the two smallest chains A and B in C
merge A and B into a chain D, linearly
$C \leftarrow C \backslash\{A, B\} \cup\{D\}$
phase 3: return the chain in C
Theorem 3 The query complexity of Algorithm 2 is for every $\varepsilon>0$ at most

$$
(\widetilde{g}+1) n \leq(1+\varepsilon) \log e(P)+O_{\varepsilon}(n)
$$

