A weaker version of Lovász' path removal conjecture

Ken-ichi Kawarabayashi, Orlando Lee, Bruce Reed
and Paul Wollan
Presented by Rudolf Stolař

Conjecture 1 (Lovász). There exists a function $f=f(k)$ such that the following holds. For every $f(k)$-connected graph G and two wertices s and t of G, there exists a path P with endpoints s and t such that $G-V(P)$ is k-connected.

Conjecture 2 (Kriessel). There exists a function $f=f(k)$ such that the following holds. For every $f(k)$-connected graph G and two wertices s and t of G, there exists an induced path P with endpoints s and t such that $G-E(P)$ is k-connected.

Theorem 1. There exists a function $f(k)=O(k)^{4}$ such that the following holds: for any two vertices s and t of an $f(k)$-connected graph G, there exists an induced s-t path P such that $G-E(P)$ is k-connected.

Theorem 2 (Mader). Every graph of minimum degree $4 k$ contains a k-connected subgraph.

Theorem 3 (Thomassen). Let k be any natural number, and G be any graph of minimum degree $>4 k^{2}$. Then G contains a k-connected subgraph with more than $4 k^{2}$ vertices whose boundary has at most $2 k^{2}$ vertices.

Definition (Separation). A separation of a graph is a pair (A, B) of subsets of vertices of G such that $A \cup B$ is equal to $V(G)$, and for every edge $e=u v$ of G, either both u and v are contained in A or both are contained in B. The order of a separation (A, B) is $|A \cap B|$.

Definition (Linkage). A linkage is a graph where every connected component is a path. A linkage problem in a graph G is a set of pairs of vertices of G. A solution to a linkage problem $\mathcal{L}=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ is a set of pairwise internally disjoint paths P_{1}, \ldots, P_{k} such that ends of P_{i} are s_{i} and t_{i}, and furthermore, if $x \in V\left(P_{i}\right) \cap V\left(P_{j}\right)$ for some distinct indices i and j, then $x=s_{i}$ or $x=t_{i}$.

A graph is strongly k-linked if every linkage problem $\mathcal{L}=\left\{\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right\}$ consisting of k pairs in G has a solution.

Theorem 4. Every $10 k$-connected graph is strongly k-linked.

