A weaker version of Lovász' path removal conjecture

Ken-ichi Kawarabayashi, Orlando Lee, Bruce Reed and Paul Wollan

Presented by Rudolf Stolař

Conjecture 1 (Lovász). There exists a function f = f(k) such that the following holds. For every f(k)-connected graph G and two wertices s and t of G, there exists a path P with endpoints s and t such that G - V(P) is k-connected.

Conjecture 2 (Kriessel). There exists a function f = f(k) such that the following holds. For every f(k)-connected graph G and two wertices s and t of G, there exists an induced path P with endpoints s and t such that G - E(P) is k-connected.

Theorem 1. There exists a function $f(k) = O(k)^4$ such that the following holds: for any two vertices s and t of an f(k)-connected graph G, there exists an induced s-t path P such that G - E(P) is k-connected.

Theorem 2 (Mader). Every graph of minimum degree 4k contains a k-connected subgraph.

Theorem 3 (Thomassen). Let k be any natural number, and G be any graph of minimum degree $> 4k^2$. Then G contains a k-connected subgraph with more than $4k^2$ vertices whose boundary has at most $2k^2$ vertices.

Definition (Separation). A separation of a graph is a pair (A, B) of subsets of vertices of G such that $A \cup B$ is equal to V(G), and for every edge e = uv of G, either both u and v are contained in A or both are contained in B. The order of a separation (A, B) is $|A \cap B|$.

Definition (Linkage). A linkage is a graph where every connected component is a path. A linkage problem in a graph G is a set of pairs of vertices of G. A solution to a linkage problem $\mathcal{L} = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ is a set of pairwise internally disjoint paths P_1, \ldots, P_k such that ends of P_i are s_i and t_i , and furthermore, if $x \in V(P_i) \cap V(P_j)$ for some distinct indices i and j, then $x = s_i$ or $x = t_i$.

A graph is strongly k-linked if every linkage problem $\mathcal{L} = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ consisting of k pairs in G has a solution.

Theorem 4. Every 10k-connected graph is strongly k-linked.