
A Local Clustering Algorithm for Massive Graphs
and its Application to Nearly-Linear Time

Graph Partitioning

Daniel A. Spielman Shang-Hua Teng

presented by Tomáš Gavenčiak

Preliminaries

Let G = (V,E) be a graph on n vertices and m edges. Let A be an adjacency matrix
of G.

Let µ(S) =
∑

v∈S degG(v). Note that µ(V) = 2m.

The conductance of S ⊆ V is defined as

Φ(S) =
|E(S, V \ S)|

min(µ(S), µ(V \ S))
.

Note that Φ(S) ∈ [0, 1]. Let ΦG denote the minimal Φ(S) over all noempty S ⊂ V .

Clustering problem (deciding the existence of S ⊆ V with Φ(S) ≤ φ for given φ)
is an NP-complete problem. There are O(

√
log(n)) approximation algorithms, but

their complexity is high (algorithms usually use maxflow, linear or semidefinite pro-
gramming as subroutines).

Truncated random walks. We use several vectors [0, 1]V in the algorithm, most
of these are approximations of random walk distributions, but may sum to less than
1.

Let χS be the characteristic {0, 1} vector of S ⊆ V . Let DS be the diagonal matrix
with χS on the diagonal. Let ψS(u) = deg(u)/µ(S) for u ∈ S and 0 otherwise.

The random walk distribution will change according to matrix M = (AD−1 + I)/2,
D is the diagonal matrix with vertex degrees. The walk stays at the current vertex
with prob. 1/2 and moves across a random edge otherwise. p0 = χv, pi+1 = Mpi is
the distributions of i-th step of a random walk starting from v.

For vector p, let [p]ε(u) be truncated to 0 if p(u) < ε deg(u), p(u) otherwise. Let
q0 = χv, ri = [qi]ε and qi+1 = Mri be the distribution of ε-truncated random walk
after step i.

Lemma 2.2. For all vectors p ≥ 0, |D−1(Mp)|∞ ≤ |D−1p|∞.

Lemma 2.4. For every S ⊆ V , all vectors p, q ≥ 0 and all integers t > 0,

pT (DSM)tq ≤ pTM tq.

1

Lemma 2.5. For every S ⊆ V and all integers t > 0,

1T (DSM)tψS ≥ 1− tΦ(S)/2.

Best vertices and magical function. Let Sj(p) denote the set of j vertices maxi-
mizing p(u)/d(u). Let λj(p) = µ(Sj(p)) be the degree sum of these vertices.

For p vector and x ∈ [0, 2m], define

I(p, x) = max
w∈[0,1]V , w·deg=x

w · p

This is a concave, non-decreasing function to [0, 1] for p (sub)distribution. Note that
I(p, λj(p)) = p · χSj(p) and I(p, .) is linear between such points.

Let Ix(p, x) = I(p, x)/dx (defined by right limit in turning points).

Algorithms

We fix φ ∈ [0, 1] to be the desired upper bound on conductance.

Informal statement about Nibble. For a cluster C0 of conductance at most
f = Ω(φ2/ log3(n)), Nibble started at random v ∈ C0 (sampled acc. to degrees)
returns C of conductance at most φ, mostly contained in C0, in time linear in C with
probability at least 1/2.

Important constants. Let l = dlog2(m)e and t1 = d 2
φ2

ln(c1(l + 2)
√
m)e, where

c1 ≈ 200. The paper uses t1 up to tl+1 = tlast as an alias for ti = it.

Let f = f1(φ) = 1/(c2(l + 2)(l + 1)t1), where c2 ≈ 280. For m ≥ 1000 and the
constants above f ≥ φ2/(2000 log3(m)).

Algorithm Nibble(G, v, φ, b) for b ∈ 1 . . . l:

1. Set ε = 1/(c3(l + 2)(l + 1)t12
b).

2. Set q0 = r0 = χv.

3. For t = 1 to (l + 1)t1

(a) Set qt = Mrt−1 and rt = [qt]ε.

(b) If there is j such that

i. Φ(Sj(qt)) ≤ φ (small conductivity)

ii. λj(qt) ≤ (5/6)2m (at most 5/6 edge endpoints)

iii. 2b ≤ λj(qt) (at least 2b edge endpoints)

iv. Ix(qt, 2
b) ≥ 1/(c4(l + 2)2b) (large probability mass of many vertices)

2

then return C = Sj(qt).

4. Return C = ∅.

Theorem N. Nibble(G, v, φ, b) can be implemented to run in timeO(2b log6(m)/φ4).
Also we have:

(N.1) When C = Nibble(G, v, φ, b) is non-empty, Φ(C) ≤ φ, µ(C) ≤ (5/6)2m.

(N.2) Each S ⊆ V with µ(S) ≤ (2/3)2m and Φ(S) ≤ f has a subset Sg (of potentially
good starting vertices) with µ(Sg) ≥ µ(S)/2 and such that for every v ∈ Sg with
C = Nibble(G, v, φ, b) non-empty, µ(C ∩ S) ≥ 2b.

(N.3) The set Sg may be partitioned into Sg0 , . . .Sgl such that for every v ∈ Sg, there
is b, such that if v ∈ Sgb then Nibble(G, v, φ, b) is non-empty.

Algorithm RandomNibble(G, φ)

1. Choose v according to ψV .

2. Choose b ∈ 1 . . . dlog2(m)e with pp. proportional to 2−b.

3. Return C = Nibble(G, v, φ, b)

Theorem RN. The expected running time of RandomNibble is O(log7(m)/φ4). If
C ic non-empty, Φ(C) ≤ φ and µ(C) ≤ (5/6)2m. (N.1)

Also, for every S ⊆ V with µ(S) ≤ (2/3)2m and Φ(S) ≤ f , E[µ(C ∩ S)] ≥
µ(S)/(4µ(V)).

Algorithm Partition(G, θ, π) for θ, π ∈ (0, 1)

Let f2(θ) = f1(θ/7)/2. Note that f2(θ) ≤ φ2/(2 · 105 log3(m)).

1. Choose W0 = V , j = 0, φ = θ/7.

2. While j < 12mdln(1/π)e and µ(Wj) ≥ (3/4)2m,

(a) Set j = j + 1

(b) Set Dj = RandomNibble(G[Wj−1], φ)

(c) Set Wj = Wj−1 \Dj

3. Return D =
⋃
iDi

3

Theorem P. The expected running time of Partition is O(m ln(1/π) log7(m)/θ4),
We also have

(P.1) µ(D) ≤ (7/8)µ(V).

(P.2) If D is nonempty then Φ(D) ≤ θ.
(P.3) For any S ⊆ V with µ(S) ≤ µ(V)/2 and Φ(S) ≤ f2(θ), with probability at
least 1− π either

(P.3.a) µ(D) ≤ (1/4)2m or

(P.3.b) µ(S ∩D) ≥ µ(S)/2.

Analysis of Nibble

Step 1: Introducing Sg, proving (N.1) and (N.2).

For each S ⊆ V , let Sg be all v such that for all t ≤ tlast, χTV \SM
tχv ≤ tlastΦ(S).

Lemma 2.7 (N.1). µ(Sg) ≤ µ(S)/2.

Lemma 2.8 (N.2). If Φ(S) ≤ f , v ∈ Sg and Nibble(G, v, φ, b) is non-empty, then
µ(C ∩ S) ≤ 2b−1.

Step 2: Properties of I(p, x), refining Sg into Ggb .

Lemma 2.9 [LS90]. For every vector p ≥ 0 and x, I(Mp, x) ≤ I(p, x).

Lemma 2.10 [LS90]. For every vector p ≥ 0, if Φ(Sj(Mp)) ≥ φ, then for x =
λj(Mp) and x̂ = min(x, 2m− x),

I(Mp, x) ≤ 1

2
(I(p, x− 2φx̂) + I(p, x+ 2φx̂)).

For h ∈ 0 . . . l + 1, let xh(v) be such that I(pth , xh(v)) = (h+ 1)/((l + 2)c5).

Let h(v) = hv be l+1 if xl(v) ≥ 2m/(c6(l+2)), otherwise min{h : xh(v) ≤ 2hh−1(v)}.

Sg0 = {v : xh(v)−1(v) ∈ [0, 2)}

Sgb = {v : xh(v)−1(v) ∈ [2b, 2b+1)}

Lemma. h(v) are well defined, Sgb partition Sg, xh < hh+1.

Step 3: Truncated random walks and clustering

Lemma 2.13. For all u ∈ V , x and t,

pt(u) ≥ qt(u) ≥ rt(u) ≥ pt(u)− tεdeg(u)

I(pt, x) ≥ I(qt, x) ≥ I(rt, x) ≥ I(pt, x)− tεx

The hard work is done in Lemmas 2.15 and 2.17 in the paper.

4

