A Local Clustering Algorithm for Massive Graphs
and its Application to Nearly-Linear Time
Graph Partitioning

Daniel A. Spielman Shang-Hua Teng

presented by Toméas Gavenciak

Preliminaries

Let G = (V, E) be a graph on n vertices and m edges. Let A be an adjacency matrix
of G.

Let u(S) = > ,cgdegg(v). Note that p(V) = 2m.
The conductance of S C V is defined as
BEV\S)|
min(u(S), w(V'\ 5))
Note that ®(S) € [0,1]. Let ¢ denote the minimal ®(.S) over all noempty S C V.

Clustering problem (deciding the existence of S C V with ®(S) < ¢ for given ¢)
is an NP-complete problem. There are O(y/log(n)) approximation algorithms, but
their complexity is high (algorithms usually use maxflow, linear or semidefinite pro-
gramming as subroutines).

B(S) =

Truncated random walks. We use several vectors [0,1]" in the algorithm, most
of these are approximations of random walk distributions, but may sum to less than
1.

Let xg be the characteristic {0,1} vector of S C V. Let Dg be the diagonal matrix
with xg on the diagonal. Let 1g(u) = deg(u)/u(S) for u € S and 0 otherwise.

The random walk distribution will change according to matrix M = (AD~1 +1)/2,
D is the diagonal matrix with vertex degrees. The walk stays at the current vertex
with prob. 1/2 and moves across a random edge otherwise. pg = Xy, pi+1 = Mp; is
the distributions of i-th step of a random walk starting from v.

For vector p, let [plc(u) be truncated to 0 if p(u) < edeg(u), p(u) otherwise. Let
g0 = Xv, Ti = [qi]e and ¢iy1 = Mr; be the distribution of e-truncated random walk
after step 1.

Lemma 2.2. For all vectors p > 0, |[D™1(Mp)|so < |D7!p|so.
Lemma 2.4. For every S C V, all vectors p,q > 0 and all integers t > 0,

' (DsM)'q < p" M'q.

Lemma 2.5. For every S C V and all integers ¢ > 0,

17 (DgM)'pg > 1 — t®(S) /2.

Best vertices and magical function. Let S;j(p) denote the set of j vertices maxi-
mizing p(u)/d(u). Let A;j(p) = u(S;j(p)) be the degree sum of these vertices.

For p vector and z € [0, 2m], define

I(p,x)= max w -
(p7) we(0,1]V, w-deg=z b

This is a concave, non-decreasing function to [0, 1] for p (sub)distribution. Note that
I(p,\j(p)) =p- Xs;(p) and I(p,.) is linear between such points.

Let I;(p,x) = I(p,x)/dx (defined by right limit in turning points).

Algorithms
We fix ¢ € [0, 1] to be the desired upper bound on conductance.

Informal statement about Nibble. For a cluster Cy of conductance at most
f = Q(¢?/log(n)), Nibble started at random v € Cj (sampled acc. to degrees)
returns C' of conductance at most ¢, mostly contained in Cp, in time linear in C' with
probability at least 1/2.

Important constants. Let [= [logy(m)] and t; = [% In(ci (I + 2)y/m)], where
c1 =~ 200. The paper uses t1 up to t;11 = tjqs¢ as an alias for ¢; = it.

Let f = fi(¢) = 1/(c2(l+2)(I + 1)t1), where ¢ ~ 280. For m > 1000 and the
constants above f > ¢2/(2000log®(m)).

Algorithm Nibble(G, v, ¢, b) forbe 1...1:

1. Set e = 1/(c3(l +2)(1 + 1)t12°).
2. Set qo =19 = Xo-
3. Fort=1to (I+ 1)

(a) Set ¢t = Mri—1 and 14 = [g¢]e.
(b) If there is j such that
i. ®(Sj(qt)) < ¢ (small conductivity)
il. Aj(q) < (5/6)2m (at most 5/6 edge endpoints)
iii. 2° < X\;j(q:) (at least 2° edge endpoints)
iv. I.(qi,2%) > 1/(ca(l +2)2°) (large probability mass of many vertices)

then return C' = Sj(q).

4. Return C' = 0.

Theorem N. Nibble(G, v, ¢, b) can be implemented to run in time O (2 log®(m) /¢*).
Also we have:

(N.1) When C = Nibble(G, v, ¢,b) is non-empty, ®(C) < ¢, u(C) < (5/6)2m.

(N.2) Each S C V with p(S) < (2/3)2m and ®(S) < f has a subset SY (of potentially
good starting vertices) with p(S9) > u(S)/2 and such that for every v € S9 with
C = Nibble(G,v, ¢,b) non-empty, u(C N S) > 2°.

(N.3) The set SY may be partitioned into SJ, ... S} such that for every v € S, there
is b, such that if v € Sy then Nibble(G,v,$,b) is non-empty.

Algorithm RandomNibble(G, ¢)

1. Choose v according to 1y .
2. Choose b € 1...[logy(m)] with pp. proportional to 27°.

3. Return C' = Nibble(G, v, ¢, b)

Theorem RN. The expected running time of RandomNibble is O(log” (m)/¢*). If
C' ic non-empty, ®(C) < ¢ and p(C) < (5/6)2m. (N.1)

Also, for every S C V with u(S) < (2/3)2m and ®(S) < f, Eu(C N S)| >
u(S)/ (4u(V)).

Algorithm Partition(G, 0,) for 6,7 € (0,1)

Let fo(0) = f1(0/7)/2. Note that f(8) < ¢?/(2 - 10°log®(m)).
1. Choose Wy =V, j=0,¢=06/T.
2. While j < 12m[In(1/7)] and p(W;) > (3/4)2m,

(a) Set j=7+1
(b) Set D; = RandomNibble(G[W;_1], ¢)
(C) Set Wj = Wj—l \ Dj

3. Return D =, D;

Theorem P. The expected running time of Partition is O(mIn(1/7)log”(m)/6*),
We also have

(P.1) u(D) < (7/8)u(V).
(P.2) If D is nonempty then ®(D) <

6.
(P.3) For any S C V with u(S) < p(V)/2 and ®(S) < f2(0), with probability at
least 1 — 7 either

(P.3.a) u(D) < (1/4)2m or
(P.3.b) u(SND) > pu(S)/2.

Analysis of Nibble

Step 1: Introducing S9, proving (N.1) and (N.2).

For each S C V, let S9 be all v such that for all £ < t,4, Xg\SMtXu < t1astP(S).
Lemma 2.7 (N.1). u(S9) < u(S)/2.

Lemma 2.8 (N.2). If ®(S) < f, v € S9 and Nibble(G,v, ¢, b) is non-empty, then
u(CnS) < 2=,

Step 2: Properties of I(p, z), refining SY into G7.

Lemma 2.9 [LS90]. For every vector p > 0 and z, I(Mp,z) < I(p,z).

Lemma 2.10 [LS90]. For every vector p > 0, if ®(S;(Mp)) > ¢, then for x =
Aj(Mp) and & = min(x,2m — x),

I(Mp,fl)) < (I(p,x—?qﬁi)—l—f(p,:n—l—?qf):ﬁ))

(NN

For h € 0...1+1, let x(v) be such that I(p,,zn(v)) = (h+1)/(({ + 2)cs).
Let h(v) = hy be l+1if 2;(v) > 2m/(c6(142)), otherwise min{h : xp(v) < 2hp_1(v)}.

S§=1{v: Tpe)-1(v) €10,2)}
S’f ={v: l‘h(v)—1(U) € [Qb,2b+1)}

Lemma. h(v) are well defined, Sy partition SY, x, < hpy1.

Step 3: Truncated random walks and clustering

Lemma 2.13. For all u € V, x and t,
pe(u) > q(u) > re(u) > p(u) — tedeg(u)
I(pt,w) > (g, x) = I(re,x) > I(pt,) — tex

The hard work is done in Lemmas 2.15 and 2.17 in the paper.

