A Local Clustering Algorithm for Massive Graphs and its Application to Nearly-Linear Time
 Graph Partitioning

Daniel A. Spielman

Shang-Hua Teng
presented by Tomáš Gavenčiak

Preliminaries

Let $G=(V, E)$ be a graph on n vertices and m edges. Let A be an adjacency matrix of G.
Let $\mu(S)=\sum_{v \in S} \operatorname{deg}_{G}(v)$. Note that $\mu(V)=2 m$.
The conductance of $S \subseteq V$ is defined as

$$
\Phi(S)=\frac{|E(S, V \backslash S)|}{\min (\mu(S), \mu(V \backslash S))}
$$

Note that $\Phi(S) \in[0,1]$. Let Φ_{G} denote the minimal $\Phi(S)$ over all noempty $S \subset V$.
Clustering problem (deciding the existence of $S \subseteq V$ with $\Phi(S) \leq \phi$ for given ϕ) is an NP-complete problem. There are $O(\sqrt{\log (n)})$ approximation algorithms, but their complexity is high (algorithms usually use maxflow, linear or semidefinite programming as subroutines).

Truncated random walks. We use several vectors $[0,1]^{V}$ in the algorithm, most of these are approximations of random walk distributions, but may sum to less than 1.

Let χ_{S} be the characteristic $\{0,1\}$ vector of $S \subseteq V$. Let D_{S} be the diagonal matrix with χ_{S} on the diagonal. Let $\psi_{S}(u)=\operatorname{deg}(u) / \mu(S)$ for $u \in S$ and 0 otherwise.
The random walk distribution will change according to matrix $M=\left(A D^{-1}+I\right) / 2$, D is the diagonal matrix with vertex degrees. The walk stays at the current vertex with prob. $1 / 2$ and moves across a random edge otherwise. $p_{0}=\chi_{v}, p_{i+1}=M p_{i}$ is the distributions of i-th step of a random walk starting from v.
For vector p, let $[p]_{\epsilon}(u)$ be truncated to 0 if $p(u)<\epsilon \operatorname{deg}(u), p(u)$ otherwise. Let $q_{0}=\chi_{v}, r_{i}=\left[q_{i}\right]_{\epsilon}$ and $q_{i+1}=M r_{i}$ be the distribution of ϵ-truncated random walk after step i.

Lemma 2.2. For all vectors $p \geq 0,\left|D^{-1}(M p)\right|_{\infty} \leq\left|D^{-1} p\right|_{\infty}$.
Lemma 2.4. For every $S \subseteq V$, all vectors $p, q \geq 0$ and all integers $t>0$,

$$
p^{T}\left(D_{S} M\right)^{t} q \leq p^{T} M^{t} q
$$

Lemma 2.5. For every $S \subseteq V$ and all integers $t>0$,

$$
\mathbf{1}^{T}\left(D_{S} M\right)^{t} \psi_{S} \geq 1-t \Phi(S) / 2
$$

Best vertices and magical function. Let $S_{j}(p)$ denote the set of j vertices maximizing $p(u) / d(u)$. Let $\lambda_{j}(p)=\mu\left(S_{j}(p)\right)$ be the degree sum of these vertices.
For p vector and $x \in[0,2 m]$, define

$$
I(p, x)=\max _{w \in[0,1]^{V}, w \cdot \operatorname{deg}=x} w \cdot p
$$

This is a concave, non-decreasing function to $[0,1]$ for p (sub)distribution. Note that $I\left(p, \lambda_{j}(p)\right)=p \cdot \chi_{S_{j}(p)}$ and $I(p,$.$) is linear between such points.$
Let $I_{x}(p, x)=I(p, x) / d x$ (defined by right limit in turning points).

Algorithms

We fix $\phi \in[0,1]$ to be the desired upper bound on conductance.
Informal statement about Nibble. For a cluster C_{0} of conductance at most $f=\Omega\left(\phi^{2} / \log ^{3}(n)\right)$, Nibble started at random $v \in C_{0}$ (sampled acc. to degrees) returns C of conductance at most ϕ, mostly contained in C_{0}, in time linear in C with probability at least $1 / 2$.

Important constants. Let $l=\left\lceil\log _{2}(m)\right\rceil$ and $t_{1}=\left\lceil\frac{2}{\phi^{2}} \ln \left(c_{1}(l+2) \sqrt{m}\right)\right\rceil$, where $c_{1} \approx 200$. The paper uses t_{1} up to $t_{l+1}=t_{\text {last }}$ as an alias for $t_{i}=i t$.
Let $f=f_{1}(\phi)=1 /\left(c_{2}(l+2)(l+1) t_{1}\right)$, where $c_{2} \approx 280$. For $m \geq 1000$ and the constants above $f \geq \phi^{2} /\left(2000 \log ^{3}(m)\right)$.

Algorithm $\operatorname{Nibble}(G, v, \phi, b)$ for $b \in 1 \ldots l$:

1. Set $\epsilon=1 /\left(c_{3}(l+2)(l+1) t_{1} 2^{b}\right)$.
2. Set $q_{0}=r_{0}=\chi_{v}$.
3. For $t=1$ to $(l+1) t_{1}$
(a) Set $q_{t}=M r_{t-1}$ and $r_{t}=\left[q_{t}\right]_{\epsilon}$.
(b) If there is j such that
i. $\Phi\left(S_{j}\left(q_{t}\right)\right) \leq \phi$ (small conductivity)
ii. $\lambda_{j}\left(q_{t}\right) \leq(5 / 6) 2 m$ (at most $5 / 6$ edge endpoints)
iii. $2^{b} \leq \lambda_{j}\left(q_{t}\right)$ (at least 2^{b} edge endpoints)
iv. $I_{x}\left(q_{t}, 2^{b}\right) \geq 1 /\left(c_{4}(l+2) 2^{b}\right)$ (large probability mass of many vertices)
then return $C=S_{j}\left(q_{t}\right)$.
4. Return $C=\emptyset$.

Theorem N. Nibble (G, v, ϕ, b) can be implemented to run in time $O\left(2^{b} \log ^{6}(m) / \phi^{4}\right)$. Also we have:
(N.1) When $C=\operatorname{Nibble}(G, v, \phi, b)$ is non-empty, $\Phi(C) \leq \phi, \mu(C) \leq(5 / 6) 2 m$.
(N.2) Each $S \subseteq V$ with $\mu(S) \leq(2 / 3) 2 m$ and $\Phi(S) \leq f$ has a subset S^{g} (of potentially good starting vertices) with $\mu\left(S^{g}\right) \geq \mu(S) / 2$ and such that for every $v \in S^{g}$ with $C=\operatorname{Nibble}(G, v, \phi, b)$ non-empty, $\mu(C \cap S) \geq 2^{b}$.
(N.3) The set S^{g} may be partitioned into $S_{0}^{g}, \ldots S_{l}^{g}$ such that for every $v \in S^{g}$, there is b, such that if $v \in S_{b}^{g}$ then $\operatorname{Nibble}(G, v, \phi, b)$ is non-empty.

Algorithm RandomNibble (G, ϕ)

1. Choose v according to ψ_{V}.
2. Choose $b \in 1 \ldots\left\lceil\log _{2}(m)\right\rceil$ with pp. proportional to 2^{-b}.
3. Return $C=\operatorname{Nibble}(G, v, \phi, b)$

Theorem RN. The expected running time of RandomNibble is $O\left(\log ^{7}(m) / \phi^{4}\right)$. If C ic non-empty, $\Phi(C) \leq \phi$ and $\mu(C) \leq(5 / 6) 2 m$. (N.1)
Also, for every $S \subseteq V$ with $\mu(S) \leq(2 / 3) 2 m$ and $\Phi(S) \leq f, \mathbf{E}[\mu(C \cap S)] \geq$ $\mu(S) /(4 \mu(V))$.

Algorithm Partition (G, θ, π) for $\theta, \pi \in(0,1)$
Let $f_{2}(\theta)=f_{1}(\theta / 7) / 2$. Note that $f_{2}(\theta) \leq \phi^{2} /\left(2 \cdot 10^{5} \log ^{3}(m)\right)$.

1. Choose $W_{0}=V, j=0, \phi=\theta / 7$.
2. While $j<12 m\lceil\ln (1 / \pi)\rceil$ and $\mu\left(W_{j}\right) \geq(3 / 4) 2 m$,
(a) Set $j=j+1$
(b) Set $D_{j}=\operatorname{RandomNibble}\left(G\left[W_{j-1}\right], \phi\right)$
(c) Set $W_{j}=W_{j-1} \backslash D_{j}$
3. Return $D=\bigcup_{i} D_{i}$

Theorem P. The expected running time of Partition is $O\left(m \ln (1 / \pi) \log ^{7}(m) / \theta^{4}\right)$, We also have
(P.1) $\mu(D) \leq(7 / 8) \mu(V)$.
(P.2) If D is nonempty then $\Phi(D) \leq \theta$.
(P.3) For any $S \subseteq V$ with $\mu(S) \leq \mu(V) / 2$ and $\Phi(S) \leq f_{2}(\theta)$, with probability at least $1-\pi$ either
(P.3.a) $\mu(D) \leq(1 / 4) 2 m$ or
(P.3.b) $\mu(S \cap D) \geq \mu(S) / 2$.

Analysis of Nibble

Step 1: Introducing S^{g}, proving (N.1) and (N.2).
For each $S \subseteq V$, let S^{g} be all v such that for all $t \leq t_{l a s t}, \chi_{V \backslash S}^{T} M^{t} \chi_{v} \leq t_{\text {last }} \Phi(S)$.
Lemma 2.7 (N.1). $\mu\left(S^{g}\right) \leq \mu(S) / 2$.
Lemma 2.8 (N.2). If $\Phi(S) \leq f, v \in S^{g}$ and $\operatorname{Nibble}(G, v, \phi, b)$ is non-empty, then $\mu(C \cap S) \leq 2^{b-1}$.

Step 2: Properties of $I(p, x)$, refining S^{g} into G_{b}^{g}.
Lemma 2.9 [LS90]. For every vector $p \geq 0$ and $x, I(M p, x) \leq I(p, x)$.
Lemma 2.10 [LS90]. For every vector $p \geq 0$, if $\Phi\left(S_{j}(M p)\right) \geq \phi$, then for $x=$ $\lambda_{j}(M p)$ and $\hat{x}=\min (x, 2 m-x)$,

$$
I(M p, x) \leq \frac{1}{2}(I(p, x-2 \phi \hat{x})+I(p, x+2 \phi \hat{x}))
$$

For $h \in 0 \ldots l+1$, let $x_{h}(v)$ be such that $I\left(p_{t_{h}}, x_{h}(v)\right)=(h+1) /\left((l+2) c_{5}\right)$.
Let $h(v)=h_{v}$ be $l+1$ if $x_{l}(v) \geq 2 m /\left(c_{6}(l+2)\right)$, otherwise $\min \left\{h: x_{h}(v) \leq 2 h_{h-1}(v)\right\}$.

$$
\begin{gathered}
S_{0}^{g}=\left\{v: x_{h(v)-1}(v) \in[0,2)\right\} \\
S_{b}^{g}=\left\{v: x_{h(v)-1}(v) \in\left[2^{b}, 2^{b+1}\right)\right\}
\end{gathered}
$$

Lemma. $h(v)$ are well defined, S_{b}^{g} partition $S^{g}, x_{h}<h_{h+1}$.
Step 3: Truncated random walks and clustering
Lemma 2.13. For all $u \in V, x$ and t,

$$
\begin{gathered}
p_{t}(u) \geq q_{t}(u) \geq r_{t}(u) \geq p_{t}(u)-t \epsilon \operatorname{deg}(u) \\
I\left(p_{t}, x\right) \geq I\left(q_{t}, x\right) \geq I\left(r_{t}, x\right) \geq I\left(p_{t}, x\right)-t \epsilon x
\end{gathered}
$$

The hard work is done in Lemmas 2.15 and 2.17 in the paper.

