The chance that a convex body is lattice-point free: A relative of Buffon's needle problem
 Imre Bárány
 Presented by Josef Cibulka

Definitions.

- $L_{\rho, t} \ldots$ integer lattice \mathbb{Z}^{d} rotated by ρ and translated by t
- $\mathcal{L}=\left\{L_{\rho, t}: \rho \in S O(d), t \in[0,1)^{d}\right\}$
- $\mathcal{K}^{d} \ldots$ set of all convex bodies in \mathbb{R}^{d}
- $S^{d-1} \ldots(d-1)$-dimensional unit sphere (boundary of the d-dimensional ball)
- $w(K, u) \ldots$ width of K in direction $u \ldots \max _{x, y \in K} u(x-y)$
- $w(K) \ldots$ width of $K \ldots \min _{u \in S^{d-1}} w(u)$

Theorem 1. $\forall d \geq 2 \exists c_{1}(d), c_{2}(d)>0:$ for every $K \in \mathcal{K}$ with $\operatorname{Vol} K \geq c_{2}(d)$:

$$
\operatorname{Prob}[K \cap L=\emptyset] \leq \frac{c_{1}(d)}{\operatorname{Vol} K} .
$$

Theorem 2. $\forall d \geq 2 \exists b_{1}(d), b_{2}(d), w_{d}>0$: for every $K \in \mathcal{K}$ with $\operatorname{Vol} K \geq b_{2}(d)$ and $w(K) \leq w_{d}$:

$$
\operatorname{Prob}[K \cap L=\emptyset] \geq \frac{b_{1}(d)}{\operatorname{Vol} K} .
$$

Tools.

Definitions.

- octahedron $\operatorname{Oct}(a)=\operatorname{conv}\left\{ \pm a_{i} e_{i}, \ldots, \pm a_{n} e_{n}\right\}=\left\{x \in \mathbb{R}^{d}: \sum_{i=1}^{n}\left|x_{i} / a_{i}\right| \leq 1\right\}$
- slab $S(u, \nu)$, where $u \in \mathbb{R}^{d}, \nu>0 \ldots\{x:-\nu \leq u x \leq \nu\}$
- $W(K) \ldots$ lattice width $\ldots \min _{z \in \mathbb{Z}^{d}, z \neq 0} w(K, z)$

Theorem 3 (Löwner-John ellipsoid pair). Given $K \in \mathcal{K}$, there exists a pair of ellipsoids E, E^{\prime} such that $E \subset K \subset E^{\prime}, E$ and E^{\prime} are concentric and E is obtained from E^{\prime} by shrinking by a factor of $1 / d$.

Corollary 1 (Octahedron pair). Given $K \in \mathcal{K}$, there exists a vector a such that for some congruent copy K^{\star} of K :

$$
O c t(a) \subset K^{\star} \subset O c t\left(d^{3 / 2} a\right) .
$$

Lemma 2. Let $A=\left\{f \in S^{d-1}: \forall i \in[d]:\left|f_{i}\right| \leq \frac{\nu}{a_{i}|u|}\right\}$. We have

$$
\operatorname{Prob}_{\rho}[O c t(a) \subset \rho S(u, \nu)]=\lambda(A) .
$$

Let $\alpha_{i}=\frac{\nu}{a_{i}|u|}$. If $\alpha_{i} \geq 1$ for some i, then

$$
\prod_{i: a(i)<1} \alpha_{i}<\lambda \lambda(A) \ll \prod_{i, a(i)<1} \alpha_{i} .
$$

Theorem 4 (Flatness theorem). If $K \in \mathcal{K}^{d}$ and $K \cap \mathbb{Z}^{d}=\emptyset$, then $W(K) \leq W_{d}$ (W_{d} depends only on d).

Proof of Theorem 1

- suffices for $K=\operatorname{Oct}(a)$ with $a_{1} \leq a_{2} / 2 \leq \cdots \leq a_{d} / 2^{d-1}$
- width of $\operatorname{Oct}(a)$ is $2\left(\sum_{1}^{d} 1 / a_{i}^{2}\right)^{-1 / 2} \geq a_{1} \sqrt{3}$
- $P \subset \mathbb{Z}^{d} \ldots$ set of primitive vectors u (g.c.d. of components of u is 1)
- from Flatness theorem:

$$
\operatorname{Prob}[O c t(a) \cap L=\emptyset] \leq \sum_{u \in \mathbb{Z}^{d}} \operatorname{Prob}\left[O c t(a) \subset \rho S\left(u, W_{d} / 2\right)\right]
$$

- apply Lemma 2

Proof of Theorem 2

- suffices for $K=\operatorname{Oct}(a)$ with $a_{1} \leq a_{2} / 2 \leq \cdots \leq a_{d} / 2^{d-1}$
- given $u \in P, E(u):=\{\rho \in S O(d): \operatorname{Oct}(a) \subset \rho S(u, 0.48)\}$
- let $P^{\star}=\left\{u \in P: 2.1 \leq 1 /\left(a_{1}|u|\right) \leq 2.3\right\}$ and $P(u)=\left\{v \in P^{\star}:|v| \geq|u|, v \neq u\right\}$

$$
\operatorname{Prob}[O c t(a) \cap L=\emptyset] \gg \lambda\left(\bigcup_{u \in p} E(u)\right) \gg \sum_{u \in P^{\star}}\left(\lambda(E(u))-\sum_{v \in P(u)} \lambda(E(u) \cap E(v))\right)
$$

Applications: randomized integer convex hull

Definitions.

- $u(x) \ldots$ volume of the Macbeath region $K \cap(2 x-K)$ (where $x \in K$)
- $K(u \leq t)=\{x \in K: u(x) \leq t\}$
- $E\left(f_{0}\left(I_{L}(K)\right)\right) \ldots$ expected number of vertices of the randomized integer convex hull
- $\mathcal{K}_{D}^{d} \ldots$ set of $K \in \mathcal{K}^{d}$ with ratio between radii of circumscribed and inscribed circle at most D

Theorem 5. Fix $D>1$. For every $K \in \mathcal{K}_{D}^{d}$:

$$
\operatorname{Vol} K(u \leq 1) \ll E\left(f_{0}\left(I_{L}(K)\right)\right) \ll \operatorname{Vol} K(u \leq 1)
$$

- It is known that $(\log \operatorname{Vol} K)^{d-1} \ll \operatorname{Vol} K(u \leq 1) \ll(\operatorname{Vol} K)^{(d-1) /(d+1)}$ and both bounds can be reached.

Definitions.

- expected missed area $\ldots M(K)=E\left[\operatorname{Vol}\left(K \backslash I_{L}(K)\right)\right]$
- minimal cap $C(x)=K \cap H$, where H is a halfplane containing x and minimizing $\operatorname{Vol}(K \cap H)$
- $w(x) \ldots$ width of $C(x)$ in direction orthogonal to the bounding hyperplane of $C(x)$
- $K_{0}=\left\{x \in K: w(x) \leq w_{d}\right\}$

Theorem 6. Fix $D>1$. For every $K \in \mathcal{K}_{D}^{d}$ with $\operatorname{Vol} K \rightarrow \infty$:

$$
\int_{K_{0} \cap K(u \geq 1)} \frac{d x}{u(x)} \ll M(K) \ll \int_{K} \frac{d x}{1+u(x)}
$$

