The chance that a convex body is lattice-point free: A relative of Buffon's needle problem

Imre Bárány

Presented by Josef Cibulka

Definitions.

- $L_{\rho,t}$... integer lattice \mathbb{Z}^d rotated by ρ and translated by t
- $\mathcal{L} = \{L_{\rho,t} : \rho \in SO(d), t \in [0,1)^d\}$
- \mathcal{K}^d ... set of all convex bodies in \mathbb{R}^d
- $S^{d-1} \dots (d-1)$ -dimensional unit sphere (boundary of the d-dimensional ball)
- $w(K, u) \dots$ width of K in direction $u \dots \max_{x,y \in K} u(x y)$
- w(K) ... width of K ... $\min_{u \in S^{d-1}} w(u)$

Theorem 1. $\forall d \geq 2 \exists c_1(d), c_2(d) > 0$: for every $K \in \mathcal{K}$ with $\operatorname{Vol} K \geq c_2(d)$:

$$\operatorname{Prob}[K \cap L = \emptyset] \le \frac{c_1(d)}{\operatorname{Vol} K}.$$

Theorem 2. $\forall d \geq 2 \exists b_1(d), b_2(d), w_d > 0$: for every $K \in \mathcal{K}$ with $\operatorname{Vol} K \geq b_2(d)$ and $w(K) \leq w_d$:

$$\operatorname{Prob}[K \cap L = \emptyset] \ge \frac{b_1(d)}{\operatorname{Vol} K}.$$

Tools.

Definitions.

- octahedron $Oct(a) = conv\{\pm a_i e_i, \dots, \pm a_n e_n\} = \{x \in \mathbb{R}^d : \sum_{i=1}^n |x_i/a_i| \le 1\}$
- slab $S(u,\nu)$, where $u \in \mathbb{R}^d, \nu > 0 \dots \{x : -\nu \le ux \le \nu\}$
- W(K) ... lattice width $\dots \min_{z \in \mathbb{Z}^d, z \neq 0} w(K, z)$

Theorem 3 (Löwner-John ellipsoid pair). Given $K \in \mathcal{K}$, there exists a pair of ellipsoids E, E' such that $E \subset K \subset E'$, E and E' are concentric and E is obtained from E' by shrinking by a factor of 1/d.

Corollary 1 (Octahedron pair). Given $K \in \mathcal{K}$, there exists a vector a such that for some congruent copy K^* of K:

$$Oct(a) \subset K^{\star} \subset Oct(d^{3/2}a).$$

Lemma 2. Let $A = \{f \in S^{d-1} : \forall i \in [d] : |f_i| \le \frac{\nu}{a_i|u|}\}$. We have

$$\operatorname{Prob}_{\rho}[Oct(a) \subset \rho S(u, \nu)] = \lambda(A).$$

Let $\alpha_i = \frac{\nu}{a_i |u|}$. If $\alpha_i \ge 1$ for some *i*, then

$$\prod_{i:\alpha(i)<1} \alpha_i \ll \lambda(A) \ll \prod_{i:\alpha(i)<1} \alpha_i.$$

Theorem 4 (Flatness theorem). If $K \in \mathcal{K}^d$ and $K \cap \mathbb{Z}^d = \emptyset$, then $W(K) \leq W_d$ (W_d depends only on d).

Proof of Theorem 1

- suffices for K = Oct(a) with $a_1 \le a_2/2 \le \dots \le a_d/2^{d-1}$ width of Oct(a) is $2\left(\sum_{i=1}^d 1/a_i^2\right)^{-1/2} \ge a_1\sqrt{3}$
- $P \subset \mathbb{Z}^d$... set of primitive vectors u (g.c.d. of components of u is 1)
- from Flatness theorem:

$$\operatorname{Prob}[Oct(a) \cap L = \emptyset] \le \sum_{u \in \mathbb{Z}^d} \operatorname{Prob}[Oct(a) \subset \rho S(u, W_d/2)]$$

• apply Lemma 2

Proof of Theorem 2

- suffices for K = Oct(a) with $a_1 \le a_2/2 \le \cdots \le a_d/2^{d-1}$
- given $u \in P$, $E(u) := \{\rho \in SO(d) : Oct(a) \subset \rho S(u, 0.48)\}$
- let $P^{\star} = \{u \in P : 2.1 \le 1/(a_1|u|) \le 2.3\}$ and $P(u) = \{v \in P^{\star} : |v| \ge |u|, v \ne u\}$

$$\operatorname{Prob}[Oct(a) \cap L = \emptyset] \gg \lambda\left(\bigcup_{u \in p} E(u)\right) \gg \sum_{u \in P^{\star}} \left(\lambda(E(u)) - \sum_{v \in P(u)} \lambda(E(u) \cap E(v))\right)$$

Applications: randomized integer convex hull

Definitions.

- $u(x) \dots$ volume of the Macbeath region $K \cap (2x K)$ (where $x \in K$)
- $K(u \le t) = \{x \in K : u(x) \le t\}$
- $E(f_0(I_L(K)))$... expected number of vertices of the randomized integer convex hull
- \mathcal{K}_D^d ... set of $K \in \mathcal{K}^d$ with ratio between radii of circumscribed and inscribed circle at most D

Theorem 5. Fix D > 1. For every $K \in \mathcal{K}_D^d$:

$$\operatorname{Vol}K(u \le 1) \ll E(f_0(I_L(K))) \ll \operatorname{Vol}K(u \le 1)$$

• It is known that $(\log \operatorname{Vol} K)^{d-1} \ll \operatorname{Vol} K(u \leq 1) \ll (\operatorname{Vol} K)^{(d-1)/(d+1)}$ and both bounds can be reached.

Definitions.

- expected missed area $\dots M(K) = E[Vol(K \setminus I_L(K))]$
- minimal cap $C(x) = K \cap H$, where H is a halfplane containing x and minimizing $\operatorname{Vol}(K \cap H)$
- $w(x) \dots$ width of C(x) in direction orthogonal to the bounding hyperplane of C(x)• $K_0 = \{x \in K : w(x) \le w_d\}$

Theorem 6. Fix D > 1. For every $K \in \mathcal{K}_D^d$ with $\operatorname{Vol} K \to \infty$:

$$\int_{K_0 \cap K(u \ge 1)} \frac{dx}{u(x)} \ll M(K) \ll \int_K \frac{dx}{1 + u(x)}.$$