On the Size of Kakeya sets in finite fields

Zeev Dvir

Presented by Martin Tancer

Let \mathbb{F} be a finite field (with q elements). A Kakeya set in \mathbb{F}^n is a set $K \subseteq F^n$ containing line in every direction.

Theorem 1. Let $K \subseteq \mathbb{F}^n$ be a Kakeya set. Then

$$|K| \ge C_n \cdot q^{n-1}$$

where C_n depends only on n.

A set $K \subseteq \mathbb{F}^n$ is a (δ, γ) -Kakeya set if there exists a set $L \subseteq \mathbb{F}^n$ of size at least δq^n such that for every $x \in L$ there is a line in direction x that intersects K in at least γq points. *Remark.* A Kakeya set is (1,1)-Kakeya set.

Theorem 2. Let $K \subseteq \mathbb{F}^n$ be a (δ, γ) -Kakeya set. Then

$$|K| \ge \binom{d+n-1}{n-1}$$

where $d = \lfloor q \min\{\delta, \gamma\} \rfloor - 2$.

Theorem 3. Let $K \subseteq \mathbb{F}^n$ be a Kakeya set. Then

 $|K| \ge C_n q^n$

where C_n depends only on n.

Lemma 4 (Schwartz-Zippel). Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ be a nonzero polynomial with deg $(f) \leq d$. Then

$$|\{x \in \mathbb{F}^n | f(x) = 0\}| \le dq^{n-1}.$$

Let $\mathbf{i} = (i_1, \dots, i_n)$ be a vector of nonnegative integers. The *weight* of \mathbf{i} is defined as $\operatorname{wt}(\mathbf{i}) := \sum_{k=1}^n i_k$. For an abstract variable $\mathbf{X} = (X_1, \dots, X_n)$ we denote

$$\mathbf{X}^{\mathbf{i}} := \prod_{k=1}^{n} X_{k}^{i_{k}}.$$

For a polynomial $P(\mathbf{X})$, $H_P(\mathbf{X})$ denotes the homogeneous part of $P(\mathbf{X})$ of the highest total degree. We also denote

$$\begin{pmatrix} \mathbf{i} \\ \mathbf{j} \end{pmatrix} := \prod_{k=1}^n \begin{pmatrix} i_k \\ j_k \end{pmatrix}.$$

Remark (Binomial theorem). $(\mathbf{Z} + \mathbf{W})^{\mathbf{r}} = \sum_{i \leq \mathbf{r}} {\mathbf{r} \choose i} \mathbf{Z}^{i} \mathbf{W}^{\mathbf{r}-i}.$

Definition ((Hasse) Derivative). For $P(\mathbf{X}) \in \mathbb{F}[\mathbf{X}]$ and non-negative vector **i**, the *i*th (Hasse) derivative of P, denoted $P^{(\mathbf{i})}$, is the coefficient of $Z^{(i)}$ in the polynomial $\tilde{P}(\mathbf{X}, \mathbf{Z}) = P(\mathbf{X}+\mathbf{Z}) \in \mathbb{F}[\mathbf{X}, \mathbf{Z}]$. Thus,

$$P(\mathbf{X} + \mathbf{Z}) = \sum_{\mathbf{i}} P^{(\mathbf{i})}(\mathbf{X}) \mathbf{Z}^{\mathbf{i}}.$$

Example. Let $P(\mathbf{X}) = P(X_1, X_2) = X_1^3 + X_1 X_2 + 7 \in \mathbb{F}_{11}[X_1, X_2]$. Then

$$P(\mathbf{X} + \mathbf{Z}) = X_1^3 + X_1 X_2 + 7 + (3X_1^2 + X_2)Z_1 + 3X_1 Z_1^2 + Z_1^3 + X_1 Z_2 + Z_1 Z_2.$$

Thus, for example,

$$P^{((0,0))}(\mathbf{X}) = X_1^3 + X_1 X_2 + 7,$$

$$P^{((1,0))}(\mathbf{X}) = 3X_1^2 + X_2,$$

$$P^{((3,0))}(\mathbf{X}) = P^{((1,1))} = 1,$$

$$P^{((4,0))}\mathbf{X} = P^{((1,2))} = 0$$

Definition (Multiplicity). For $P(\mathbf{X}) \in \mathbb{F}[\mathbf{X}]$ and $\mathbf{a} \in \mathbb{F}^n$, the *multiplicity* of P at \mathbf{a} , denoted $\operatorname{mult}(P, \mathbf{a})$, is the largest integer M such that for every non-negative vector \mathbf{i} with $\operatorname{wt}(\mathbf{i}) < M$ we have $P^{(\mathbf{i})}(\mathbf{a}) = 0$ (we set $\operatorname{mult}(P, \mathbf{a}) = \infty$ if there is no such largest M).

Lemma 5 (Basic properties of multiplicities). If $P(\mathbf{X}) \in F[\mathbf{X}]$ and $\mathbf{a} \in F^n$ are such that $\operatorname{mult}(P, \mathbf{a}) = m$, then $\operatorname{mult}(P^{(\mathbf{i})}, \mathbf{a}) \ge m - \operatorname{wt}(\mathbf{i})$.

Proposition 6. Let $P(\mathbf{X}) \in \mathbb{F}[\mathbf{X}]$ where $\mathbf{X} = (X_1, \ldots, X_n)$. Let $\mathbf{a}, \mathbf{b} \in \mathbb{F}^n$. Let $P_{\mathbf{a},\mathbf{b}}$ be the polynomial $P(\mathbf{a} + T\mathbf{b}) \in \mathbb{F}[T]$. Then for any $t \in \mathbb{F}$ we have

$$\operatorname{mult}(P_{\mathbf{a},\mathbf{b}},t) \ge \operatorname{mult}(P,\mathbf{a}+t\mathbf{b}).$$

Proposition 7 (Strengthening of the Schwartz-Zippel lemma). Let $P \in \mathbb{F}[\mathbf{X}]$ be a nonzero polynomial of total degree d. Then for any finite $S \subseteq \mathbb{F}$,

$$\sum_{\mathbf{a}\in S^n} \operatorname{mult}(P,a) \le d|S|^{n-1}.$$

Theorem 8. If $K \subseteq F^n$ is a Kakeya set, then $|K| \ge \left(\frac{q}{2-1/q}\right)^n$.

Proposition 9. Given a set $K \subseteq \mathbb{F}^n$ and nonnegative integers m, d such that

$$|K| < \binom{d+n}{n} / \binom{m+n-1}{n},$$

then there exists a nonzero polynomial $P = P_{m,K} \in \mathbb{F}[\mathbf{X}]$ of total degree at most d such that $\operatorname{mult}(P, a) \geq m$ for every $\mathbf{a} \in K$.