The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt{2}}$

Hugo Duminil-Copin and Stanislav Smirnov

Definitions

- $\mathbb{H}=$ hexagonal lattice
- $H=$ set of mid-edges of \mathbb{H}
- $\gamma: a \rightarrow b=$ a walk γ from the mid-edge a to the mid-edge b
- $\gamma: a \rightarrow E=$ a walk γ from the mid-edge a to a mid-edge from E
- $\ell(\gamma)=$ the length of the walk $\gamma=$ the number of vertices on γ
- $c_{n}=$ number of self-avoiding walks on \mathbb{H} of length n starting from the origin

Observation.

- $\sqrt{2}^{n} \leq c_{n} \leq 4 \cdot 2^{n-1}$
- $c_{n+m} \leq c_{n} c_{m}$

Lemma (Fekete). For a subadditive nonnegative sequence a_{n} the $\operatorname{limit}_{\lim }^{n \rightarrow \infty}{ }^{a_{n}} / n$ exists.

Corollary. There exists $\mu \in(1, \infty)$ such that $\mu=\lim _{n \rightarrow \infty} c_{n}^{1 / n}$.
Theorem. $\mu=\sqrt{2+\sqrt{2}}=2 \cos (\pi / 8)$.

Proof of the Theorem

$$
Z(x):=\sum_{n=0}^{\infty} c_{n} x^{-n}=\sum_{\gamma: a \rightarrow H} x^{-\ell(\gamma)} \quad \in(0,+\infty]
$$

idea: show that $Z(x)=+\infty$ for $x<\sqrt{2+\sqrt{2}}$ and $Z(x)<+\infty$ for $x>\sqrt{2+\sqrt{2}}$.

- $x_{c}:=\sqrt{2+\sqrt{2}}, \sigma:=5 / 8, j:=\mathrm{e}^{\mathrm{i} 2 \pi / 3}$
- a domain $\Omega \subseteq H=$ a (simply connected) union of all mid-edges adjacent to a subset $V(\Omega)$ of vertices of \mathbb{H}.
- $\partial \Omega=$ a set of mid-edges adjacent to only one vertex from $V(\Omega)$
- $\mathrm{W}_{\gamma}(a, b)=$ winding of γ between mid-edges a and $b(+\pi / 3$ for each left turn, $-\pi / 3$ for each right turn)
- ("parafermionic observable") for $a \in \partial \Omega$ and $z \in \Omega$,

$$
F(z):=F(a, z, x, \sigma):=\sum_{\gamma \subset \Omega: a \rightarrow z} \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\gamma}(a, z)} x^{-\ell(\gamma)} .
$$

Lemma 1. If $x=x_{c}$ and $\sigma=\frac{5}{8}$, then F satisfies the following relation for every vertex $v \in V(\Omega)$:

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

where p, q, r are the mid-edges of the three edges adjacent to v (in counter-clockwise order).

Counting in the strip and the trapezoid domain

vertical strip domain $S_{T}: V\left(S_{T}\right)=\left\{z \in V(\mathbb{H}): 0 \leq \operatorname{Re}(z) \leq \frac{3 T+1}{2}\right\}$
trapezoid domain $S_{T, L}: V\left(S_{T, L}\right)=\left\{z \in V\left(S_{T}\right):|\sqrt{3} \operatorname{Im}(z)-\operatorname{Re}(z)| \leq 3 L\right\}$

$$
A_{T, L}^{x}:=\sum_{\gamma \subset S_{T, L}: a \rightarrow \alpha \backslash\{a\}} x^{-\ell(\gamma)}, B_{T, L}^{x}:=\sum_{\gamma \subset S_{T, L}: a \rightarrow \beta} x^{-\ell(\gamma)}, E_{T, L}^{x}:=\sum_{\gamma \subset S_{T, L}: a \rightarrow \varepsilon \cup \bar{\varepsilon}} x^{-\ell(\gamma)} .
$$

Lemma 2. When $x=x_{c}$, we have

$$
\cos (3 \pi / 8) A_{T, L}^{x_{c}}+B_{T, L}^{x_{c}}+\cos (\pi / 4) E_{T, L}^{x_{c}}=1 .
$$

Observation. For $x \geq x_{c}$, the following limits exist and are finite:

$$
\begin{aligned}
& A_{T}^{x}=\lim _{L \rightarrow \infty} A_{T, L}^{x}=\sum_{\gamma \subset S_{T}: a \rightarrow \alpha \backslash\{a\}} x^{-\ell(\gamma)}, \\
& B_{T}^{x}=\lim _{L \rightarrow \infty} B_{T, L}^{x}=\sum_{\gamma \subset S_{T}: a \rightarrow \beta} x^{-\ell(\gamma)} \\
& E_{T}^{x_{c}}=\lim _{L \rightarrow \infty} E_{T, L}^{x_{c}}
\end{aligned}
$$

Corollary. $\quad \cos (3 \pi / 8) A_{T}^{x_{c}}+B_{T}^{x_{c}}+\cos (\pi / 4) E_{T}^{x_{c}}=1$.
I) Proof that $Z\left(x_{c}\right)=+\infty$
II) Proof that $Z(x)<+\infty$ for $x>x_{c}$

