The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt{2}}$ Hugo Duminil-Copin and Stanislav Smirnov

Definitions

- \mathbb{H} = hexagonal lattice
- $H = \text{set of } mid\text{-}edges \text{ of } \mathbb{H}$
- $\gamma: a \to b = a$ walk γ from the mid-edge a to the mid-edge b
- $\gamma: a \to E =$ a walk γ from the mid-edge a to a mid-edge from E
- $\ell(\gamma)$ = the length of the walk γ = the number of vertices on γ
- c_n = number of self-avoiding walks on \mathbb{H} of length n starting from the origin

Observation.

- $\bullet \ \sqrt{2}^n \le c_n \le 4 \cdot 2^{n-1}$
- $c_{n+m} \le c_n c_m$

Lemma (Fekete). For a subadditive nonnegative sequence a_n the limit $\lim_{n\to\infty} a_n/n$ exists.

Corollary. There exists $\mu \in (1, \infty)$ such that $\mu = \lim_{n \to \infty} c_n^{1/n}$.

Theorem. $\mu = \sqrt{2 + \sqrt{2}} = 2\cos(\pi/8)$.

Proof of the Theorem

$$Z(x) := \sum_{n=0}^{\infty} c_n x^{-n} = \sum_{\gamma: a \to H} x^{-\ell(\gamma)} \in (0, +\infty]$$

idea: show that $Z(x) = +\infty$ for $x < \sqrt{2 + \sqrt{2}}$ and $Z(x) < +\infty$ for $x > \sqrt{2 + \sqrt{2}}$.

- $x_c := \sqrt{2 + \sqrt{2}}, \ \sigma := 5/8, \ j := e^{i2\pi/3}$
- a domain $\Omega \subseteq H$ = a (simply connected) union of all mid-edges adjacent to a subset $V(\Omega)$ of vertices of \mathbb{H} .
- $\partial\Omega$ = a set of mid-edges adjacent to only one vertex from $V(\Omega)$
- $W_{\gamma}(a,b) = winding$ of γ between mid-edges a and b ($+\pi/3$ for each left turn, $-\pi/3$ for each right turn)
- ("parafermionic observable") for $a \in \partial \Omega$ and $z \in \Omega$,

$$F(z) := F(a,z,x,\sigma) := \sum_{\gamma \subset \Omega \colon a \to z} \mathrm{e}^{-\mathrm{i}\sigma W_{\gamma}(a,z)} x^{-\ell(\gamma)}.$$

Lemma 1. If $x = x_c$ and $\sigma = \frac{5}{8}$, then F satisfies the following relation for every vertex $v \in V(\Omega)$:

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0,$$

where p, q, r are the mid-edges of the three edges adjacent to v (in counter-clockwise order).

Counting in the strip and the trapezoid domain

vertical strip domain S_T : $V(S_T) = \{z \in V(\mathbb{H}) : 0 \leq \operatorname{Re}(z) \leq \frac{3T+1}{2}\}$ trapezoid domain $S_{T,L}$: $V(S_{T,L}) = \{z \in V(S_T) : |\sqrt{3}\operatorname{Im}(z) - \operatorname{Re}(z)| \leq 3L\}$

$$A_{T,L}^x := \sum_{\gamma \subset S_{T,L}: \ a \to \alpha \setminus \{a\}} x^{-\ell(\gamma)}, B_{T,L}^x := \sum_{\gamma \subset S_{T,L}: \ a \to \beta} x^{-\ell(\gamma)}, E_{T,L}^x := \sum_{\gamma \subset S_{T,L}: \ a \to \varepsilon \cup \bar{\varepsilon}} x^{-\ell(\gamma)}.$$

Lemma 2. When $x = x_c$, we have

$$\cos(3\pi/8)A_{T,L}^{x_c} + B_{T,L}^{x_c} + \cos(\pi/4)E_{T,L}^{x_c} = 1.$$

Observation. For $x \geq x_c$, the following limits exist and are finite:

$$A_T^x = \lim_{L \to \infty} A_{T,L}^x = \sum_{\gamma \subset S_T: a \to \alpha \setminus \{a\}} x^{-\ell(\gamma)},$$

$$B_T^x = \lim_{L \to \infty} B_{T,L}^x = \sum_{\gamma \subset S_T: a \to \beta} x^{-\ell(\gamma)},$$

$$E_T^{x_c} = \lim_{L \to \infty} E_{T,L}^{x_c}.$$

Corollary. $\cos(3\pi/8)A_T^{x_c} + B_T^{x_c} + \cos(\pi/4)E_T^{x_c} = 1.$

- I) Proof that $Z(x_c) = +\infty$
- II) Proof that $Z(x) < +\infty$ for $x > x_c$