Optimal bounds for sign-representing the intersection of two halfspaces by polynomials

Alexander A. Sherstov

The treshold degree of a function $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is the least degree of real polynomial p with $f(x) \equiv \operatorname{sgn} p(x)$, denoted $d e g_{ \pm}(f)$.

Theorem 1 (Main theorem) For $n=1,2,3, \ldots$, let $D(n)$ denote the maximum treshold degree of a function of the form $f(x) \wedge g(x)$, where $f, g:\{0,1\}^{n} \rightarrow\{-1,1\}$ are halfspaces. Then $D(n)=\Theta(n)$.

We give a randomized algorithm which constructs two halfspaces on $\{0,1\}^{n}$ whose intersection has treshold degree $\Theta(n)$.

Tools

The binary entropy function $H(p)=-p \log p-(1-p) \log (1-p)(H:[0,1] \rightarrow[0,1])$ is strictly increasing on $[0,1 / 2]$. Fact:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq 2^{H(k / n) n}, \quad k=0,1,2, \ldots,\lfloor n / 2\rfloor
$$

Fourier transform.

- inner product: $\langle f, g\rangle=2^{-n} \sum_{x \in\{0,1\}^{n}} f(x) g(x)$
- $\chi_{S}:\{0,1\}^{n} \rightarrow\{-1,1\}: \chi_{S}(x)=(-1)^{\sum_{i \in S} x_{i}}$ yields an orthonormal basis
- a unique representation: $f=\sum_{S \subseteq\{1, \ldots, n\}} \hat{f}(S) \chi_{S}$, where $\hat{f}(S)=\left\langle f, \chi_{s}\right\rangle$
- Parseval's identity: $\sum_{S \subseteq\{1, \ldots, n\}} \hat{f}(S)^{2}=\langle f, f\rangle$

Analysis of random halfspaces

Lemma 2 Let $f, g:\{0,1\}^{n} \rightarrow 0,1$ be given functions. Fix an integer k with $0 \leq k \leq n / 2$. For a set $S \subseteq\{1, \ldots, n\}$, define $F_{S}:\{0,1\}^{n} \rightarrow\{0,1\}$ by

$$
F_{S}(x)=f(x) \wedge\left(g(x) \oplus \bigoplus_{i \in S} x_{i}\right)
$$

Fix a real $\zeta>0$. Then with probability at least $1-2^{-n+H(k / n) n+2 \zeta n}$ over a uniformly random choice of $S \in \mathcal{P}(\{1,2, \ldots, n\})$, one has

$$
\left|\hat{F}_{S}(T)-\frac{1}{2} \hat{f}(T)\right| \leq 2^{-\zeta n-1}, \quad|T| \leq k
$$

Lemma 3 Fix an integer $k \geq 0$ and reals $\varepsilon, \zeta \in(0,1 / 2)$. Choose sets $S_{0}, S_{1}, \ldots, S_{k} \in$ $\mathcal{P}(\{1,2, \ldots, n\})$ uniformly at random. Fix any integer s and define $f:\{0,1\}^{n} \rightarrow\{0,1\}$ by

$$
f(x)=1 \Leftrightarrow \sum_{i=0}^{k} 2^{i} \sum_{j \in S_{i}} x_{j} \equiv s \quad\left(\bmod 2^{k+1}\right)
$$

Then with probability at least $1-(k+1) 2^{-n+H(\varepsilon) n+2 \zeta n}$ over the choice of $S_{0}, S_{1}, \ldots, S_{k}$, one has

$$
\left|\hat{f}(T)-\frac{\delta_{T, \emptyset}}{2^{k+1}}\right| \leq 2^{-\zeta n}, \quad|T| \leq \varepsilon n
$$

Theorem 4 (Key property of random halfspaces) Fix an integer $k \geq 0$ and reals $\varepsilon, \zeta \in$ $(0,1 / 2)$. Choose integers $w_{1}, w_{2}, \ldots, w_{n}$ uniformly at random from $\left\{0,1, \ldots, 2^{k+1}-1\right\}$. For $s \in \mathbb{Z}$, define $f_{s}:\{0,1\}^{n} \rightarrow\{0,1\}$ by

$$
f_{s}(x)=1 \Leftrightarrow \sum_{i=0}^{n} w_{i} x_{i} \equiv s \quad\left(\bmod 2^{k+1}\right)
$$

Then with probability at least $1-(k+1) 2^{-n+H(\varepsilon) n+2 \zeta n+k+1}$ over the choice of $w_{1}, w_{2}, \ldots, w_{n}$, one has

$$
\left|\hat{f}_{s}(T)-\frac{\delta_{T, \emptyset}}{2^{k+1}}\right| \leq 2^{-\zeta n}, \quad|T| \leq \varepsilon n, \quad s \in \mathbb{Z}
$$

Zeroing out correlations by a change of distribution

$f, g: X \rightarrow(R), X$ finite, then $\langle f, g\rangle=\frac{1}{|X|} \sum_{x \in X} f(x) g(x)$.
Theorem 5 Let $f, \chi_{1}, \ldots, \chi_{k}: X \rightarrow\{-1,+1\}$ be given functions on a finite set X. Suppose that

$$
\begin{gathered}
\sum_{i=1}^{k}\left|\left\langle f, \chi_{i}\right\rangle\right|<\frac{1}{2} \\
\sum_{j=1, j \neq i}^{k}\left|\left\langle\chi_{i}, \chi_{j}\right\rangle\right| \leq \frac{1}{2}, \quad i=1,2, \ldots, k
\end{gathered}
$$

Then there exists a probability distribution μ on X such that

$$
\mathbb{E}_{\mu}\left[f(x) \chi_{i}(x)\right]=0, \quad i=1,2, \ldots, k
$$

Theorem 6 Let $\alpha>0$ be a sufficiently small absolute constant. Choose integers $w_{1}, w_{2}, \ldots, w_{n}$ uniformly at random from $\left\{0,1, \ldots, 2^{\lfloor\alpha n\rfloor+1}-1\right\}$. For $s \in \mathbb{Z}$, define

$$
X_{s}=\left\{x \in\{0,1\}^{n}: \sum_{i=1}^{n} w_{i} x_{i} \equiv s \quad\left(\bmod 2^{\lfloor\alpha n\rfloor}+1\right)\right\}
$$

Then with probability at least $1-e^{-n / 3}$ over the choice of $w_{1}, w_{2}, \ldots, w_{n}$, there is a distribution μ_{s} on $X_{s}($ for each s) such that

$$
\mathbb{E}_{\mu_{s}}[p(x)]=\mathbb{E}_{\mu_{t}}[p(x)]
$$

for any $s, t \in \mathbb{Z}$ and any polynomial p of degree at most $\lfloor\alpha n\rfloor$.

Reduction to a univariate problem

Another tools: rational aproximation.

- $\operatorname{deg} p(x) / q(x):=\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}$, where p, q are polynomials on \mathbb{R}^{n}
- $f: X \rightarrow\{-1,+1\}$, where $X \subseteq \mathbb{R}^{n}$. For $d \geq 0$ define

$$
R(f, d)=\inf _{p, q} \sup _{x \in X}\left|f(x)-\frac{p(x)}{q(x)}\right|,
$$

where the infimum is over all polynomials p, q of degree up to d such that $\left.q\right|_{X} \not \equiv 0$.

- $R^{+}(f, d)=\inf _{p, q} \sup _{x \in X}\left|f(x)-\frac{p(x)}{q(x)}\right|$ where q is positive on X
- $R^{+}(f, 2 d) \leq R(f, d) \leq R^{+}(f, d)$
- $S \subseteq \mathbb{R}: R^{+}(S, d)=\inf _{p, q} \sup _{x \in S}\left|\operatorname{sgn} x-\frac{p(x)}{q(x)}\right|$

Theorem 7 (Sherstov) Let n, d be positive integers, $R=R^{+}(\{ \pm 1, \pm 2, \ldots, \pm n\}, d)$. For $1 \leq d \leq \log n$,

$$
\exp \left\{-\Theta\left(\frac{1}{n^{1 /(2 d)}}\right)\right\} \leq R<\exp \left\{-\frac{1}{n^{1 / d}}\right\} .
$$

For $\log n<d<n$,

$$
R=\exp \left\{-\Theta\left(\frac{1}{\log (2 n / d)}\right)\right\} .
$$

For $d \geq n, \quad R=0$.
Theorem 8 (Sherstov) Let $f: X \rightarrow\{-1,+1\}$ and $g: Y \rightarrow\{-1,+1\}$ be given functions, where $X, Y \subseteq \mathbb{R}^{n}$ are arbitrary finite sets. Assume that f and g are not identically false. Let $d=\operatorname{deg}_{ \pm}(f \wedge g)$. Then

$$
R^{+}(f, 4 d)+R^{+}(g, 2 d)<1 .
$$

Proposition 9 Let n_{1}, \ldots, n_{k} be positive integers, $|x|:=x_{1}+x_{2}+\ldots+x_{n}$. Consider a function $F:\{0,1\}^{n_{1}} \times \ldots \times\{0,1\}^{n_{k}} \rightarrow\{-1,+1\}$ such that $F\left(x_{1}, \ldots, x_{k}\right) \equiv f\left(\left|x_{1}\right|, \ldots,\left|x_{k}\right|\right)$ for some $f:\left\{0,1, \ldots, n_{1}\right\} \times \ldots \times\left\{0,1, \ldots, n_{k}\right\} \rightarrow\{-1,+1\}$. Then for all $d, R^{+}(F, d)=R^{+}(f, d)$.

Theorem 10 (Reduction to a univariate problem) Put $k=\lfloor\alpha n\rfloor$, where $\alpha>0$ is the absolute constant from Theorem 6. Choose $w_{1}, w_{2}, \ldots, w_{n} \in\left\{0,1, \ldots, 2^{\lfloor\alpha n\rfloor+1}-1\right\}$ uniformly at random. Define $f:\{0,1\}^{n} \times\{0,1,2, \ldots, n\} \rightarrow\{-1,+1\}$ by

$$
f(x, t)=\operatorname{sgn}\left(\frac{1}{2}+\sum_{i=1}^{n} w_{i} x_{i}-2^{k+1} t\right) .
$$

Then with probability at least $1-e^{-n / 3}$ over the choice of $w_{1}, w_{2}, \ldots, w_{n}$, one has

$$
R^{+}(f, d) \geq R^{+}\left(\left\{ \pm 1, \pm 2, \ldots, \pm 2^{k}\right\}, d\right), \quad d=0,1, \ldots, k
$$

Theorem 11 Put $k=\lfloor\alpha n\rfloor$, where $\alpha>0$ is the absolute constant from Theorem 6. Choose $w_{1}, w_{2}, \ldots, w_{n}$ uniformly at random from $\left\{0,1, \ldots, 2^{\lfloor\alpha n\rfloor+1}-1\right\}$. Define $f:\{0,1\}^{2 n} \rightarrow$ $\{-1,+1\}$ by

$$
f(x)=\operatorname{sgn}\left(\frac{1}{2}+\sum_{i=1}^{n} w_{i} x_{i}-2^{k+1} \sum_{i=n+1}^{2 n} x_{i}\right)
$$

Then with probability at least $1-e^{-n / 3}$ over the choice of $w_{1}, w_{2}, \ldots, w_{n}$, one has

$$
R^{+}(f, d) \geq R^{+}\left(\left\{ \pm 1, \pm 2, \ldots, \pm 2^{k}\right\}, d\right), \quad d=0,1, \ldots, k
$$

Now it is easy to prove the main result.
Theorem 12 (Main result) Fix sufficiently small absolute constants $\alpha>0$ and $\beta=\beta(\alpha)>$ 0. Choose integers $w_{1}, w_{2}, \ldots, w_{n} \in\left\{0,1, \ldots, 2^{\lfloor\alpha n\rfloor+1}-1\right\}$ uniformly at random. Then with probability at least $1-e^{-n / 3}$, the function $f:\{0,1\}^{2 n} \rightarrow\{-1,+1\}$ given by

$$
f(x)=\operatorname{sgn}\left(\frac{1}{2}+\sum_{i=1}^{n} w_{i} x_{i}-2^{\lfloor\alpha n\rfloor+1} \sum_{i=n+1}^{2 n} x_{i}\right)
$$

obeys $\operatorname{deg}_{ \pm}(f \wedge f) \geq\lfloor\beta n\rfloor$.

