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The treshold degree of a function f :{0,1}" — {—1,1} is the least degree of real polyno-
mial p with f(x) = sgnp(x), denoted deg (f).

Theorem 1 (Main theorem) Forn = 1,2,3,..., let D(n) denote the mazimum treshold
degree of a function of the form f(x) A g(x), where f,g : {0,1}" — {—1,1} are halfspaces.
Then D(n) = ©(n).

We give a randomized algorithm which constructs two halfspaces on {0,1}" whose inter-
section has treshold degree O(n).

Tools

The binary entropy function H(p) = —plogp— (1 —p)log(l1—p) (H : [0,1] — [0,1]) is strictly
increasing on [0, 1/2]. Fact:

Zk: <7Z> < oHG/mn — p—01,2,... |n/2].
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Fourier transform.
e inner product: (f,g) =27"3 1oy f(2)g(2)
e xs:{0,1}" = {~1,1}: xs(z) = (—1)Xies? yields an orthonormal basis
e a unique representation: f =3 gcg oy F(S)xs, where f(S) = (f, xs)

e Parseval’s identity: ZSQ{I,...,n} f(S)2 ={(f, )

Analysis of random halfspaces

Lemma 2 Let f,g: {0,1}" — 0,1 be given functions. Fix an integer k with 0 < k < n/2.
For a set S C{1,...,n}, define Fs :{0,1}" — {0,1} by

Fs(x) = f(x) A (g<x> & @xi) .
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Fiz a real ¢ > 0. Then with probability at least 1 — 2~ HHK/Mnt2Cn oo o yniformly random
choice of S € P({1,2,...,n}), one has

Bs(T) - f(T)] <ol r| <k
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Lemma 3 Fiz an integer k > 0 and reals ,{ € (0,1/2). Choose sets Sp,Si,...,Sk €
P({1,2,...,n}) uniformly at random. Fiz any integer s and define f : {0,1}" — {0,1}
by

k
flz)=1< ZZi Z zj=s (mod 21,
=0 jeSs;
Then with probability at least 1 — (k + 1)2_”+H(5)"+2<” over the choice of Sy, S1,...,Sk, one
has

2~ ¢n

. 1)
(T) — L8l <9=¢n 7| < en.
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Theorem 4 (Key property of random halfspaces) Fiz an integer k > 0 and reals e, €
(0,1/2). Choose integers wi,ws, ..., w, uniformly at random from {0,1,...,2*1 —1}. For
s € Z, define fs:{0,1}" — {0,1} by

fs(x)=1< Zwixi =s (mod 2k+1).
i=0

Then with probability at least 1 — (k4 1)2- " HHEnF2ntk+1 bper the choice of wy,wa, . .. , Wy,
one has
<2 ¢n
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|T| < en, 5 € 7.

P T,0
(1) = St
Zeroing out correlations by a change of distribution

fyg: X — (R), X finite, then (f,g) = ﬁ Y oex f(@)g(z).

Theorem 5 Let f,x1,...,xk: X = {=1,4+1} be given functions on a finite set X. Suppose
that

k
Z|<f7XZ>’ <35
i=1
- 1
> e <5 =12k
J=1.37#i

Then there exists a probability distribution p on X such that
E lf(x)xi(x)] =0, i=1,2,... k.

Theorem 6 Let o > 0 be a sufficiently small absolute constant. Choose integers wi, wa, ..., Wy
uniformly at random from {0,1,... ,2lon]+1 _ 1}. For s € Z, define

X, = {:U € {0,1}": sz‘xi =s (mod glon) 4 1)} )

=1

—n/3

Then with probability at least 1—e over the choice of wi,wa, ..., w,, there is a distribution

ws on Xg (for each s) such that

Euolp(2)] = By, [p(2)]

for any s,t € Z and any polynomial p of degree at most |an|.



Reduction to a univariate problem

Another tools: rational aproximation.
e degp(z)/q(z) := max{deg(p), deg(q)}, where p,q are polynomials on R"
o f: X —{-1,+1}, where X CR". For d > 0 define

R(f,d) = inf sup ’f(x) _ vl
D9 zeX

where the infimum is over all polynomials p, ¢ of degree up to d such that ¢|x # 0.
e RT(f,d) =inf,,sup,cx ‘f(m) - % where ¢ is positive on X

e RT(f,2d) < R(f,d) < R™(f.d)

e SCR: R"(S,d) = inf, sup,cg ‘sgnx N %

Theorem 7 (Sherstov) Let n,d be positive integers, R = RT({£1,42,...,4n},d). For

1<d<logn,
1 1

e e )

Theorem 8 (Sherstov) Let f: X — {—1,41} and g : Y — {—1,+1} be given functions,
where X, Y CR"™ are arbitrary finite sets. Assume that f and g are not identically false. Let
d=deg (f Ng). Then

Forlogn < d < n,

For d > n, R=0.

R*(f,4d) + R*(g,2d) < 1.

Proposition 9 Let ni,...,ng be positive integers, |x| == x1 + x2 + ... + x,. Consider a
function F: {0,1}™ x...x{0,1}"* — {—1,+1} such that F(x1,...,zx) = f(|z1],. .., |zk|) for
some f:{0,1,...,n1}x...x{0,1,...,n5} = {—1,+1}. Then for alld, R*(F,d) = R (f,d).

Theorem 10 (Reduction to a univariate problem) Put k = |an], where a > 0 is the
absolute constant from Theorem 6. Choose wi,ws,...,w, € {0,1,..., glon]+1 _ 1} uniformly
at random. Define f:{0,1}" x {0,1,2,...,n} — {=1,+1} by

1 n
f(z,t) = sgn (2 + sz% — 2k+1t> .
=1
Then with probability at least 1 — e~"/3 over the choice of wi,wa, ..., wy, one has

RY(f,d) > RT({£1,+2,...,+£2%} a), d=0,1,...,k.



Theorem 11 Put k = |an], where a > 0 is the absolute constant from Theorem 6. Choose
Wi, Wa, . .., Wy uniformly at random from {0,1,...,2@‘”JJrl —1}. Define f : {0,1}>" —
{_17 +1} by

1 n 2n
f(z) = sgn (2 + Zwixi — oktt Z mz> .
i=1 i=n+1

Then with probability at least 1 — e™"/3 over the choice of wi,wa, ..., w,, one has

RY(f,d) > RT({£1,42,...,£2%} a), d=0,1,...,k.
Now it is easy to prove the main result.

Theorem 12 (Main result) Fiz sufficiently small absolute constants a > 0 and 8 = (o) >
0. Choose integers wi,wa,...,w, € {0,1,..., glon|+1 _ 1} wniformly at random. Then with
probability at least 1 — e~"/3, the function f : {0,1}?" — {—1,+1} given by

n 2n
flw) = sgn (; + 3w — 2kt Y :c)

i=1 i=n+1

obeys deg.(f A f) > [fn).



