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The treshold degree of a function f : {0, 1}n → {−1, 1} is the least degree of real polyno-
mial p with f(x) ≡ sgnp(x), denoted deg±(f).

Theorem 1 (Main theorem) For n = 1, 2, 3, . . . , let D(n) denote the maximum treshold
degree of a function of the form f(x) ∧ g(x), where f, g : {0, 1}n → {−1, 1} are halfspaces.
Then D(n) = Θ(n).

We give a randomized algorithm which constructs two halfspaces on {0, 1}n whose inter-
section has treshold degree Θ(n).

Tools

The binary entropy function H(p) = −p log p− (1−p) log(1−p) (H : [0, 1] → [0, 1]) is strictly
increasing on [0, 1/2]. Fact:

k∑
i=0

(
n

i

)
≤ 2H(k/n)n, k = 0, 1, 2, . . . , bn/2c.

Fourier transform.

• inner product: 〈f, g〉 = 2−n
∑

x∈{0,1}n f(x)g(x)

• χS : {0, 1}n → {−1, 1}: χS(x) = (−1)
∑

i∈S xi yields an orthonormal basis

• a unique representation: f =
∑

S⊆{1,...,n} f̂(S)χS , where f̂(S) = 〈f, χs〉

• Parseval’s identity:
∑

S⊆{1,...,n} f̂(S)
2 = 〈f, f〉

Analysis of random halfspaces

Lemma 2 Let f, g : {0, 1}n → 0, 1 be given functions. Fix an integer k with 0 ≤ k ≤ n/2.
For a set S ⊆ {1, . . . , n}, define FS : {0, 1}n → {0, 1} by

FS(x) = f(x) ∧

(
g(x)⊕

⊕
i∈S

xi

)
.

Fix a real ζ > 0. Then with probability at least 1− 2−n+H(k/n)n+2ζn over a uniformly random
choice of S ∈ P({1, 2, . . . , n}), one has∣∣∣∣F̂S(T )−

1

2
f̂(T )

∣∣∣∣ ≤ 2−ζn−1, |T | ≤ k.
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Lemma 3 Fix an integer k ≥ 0 and reals ε, ζ ∈ (0, 1/2). Choose sets S0, S1, . . . , Sk ∈
P({1, 2, . . . , n}) uniformly at random. Fix any integer s and define f : {0, 1}n → {0, 1}
by

f(x) = 1 ⇔
k∑

i=0

2i
∑
j∈Si

xj ≡ s (mod 2k+1).

Then with probability at least 1− (k + 1)2−n+H(ε)n+2ζn over the choice of S0, S1, . . . , Sk, one
has ∣∣∣∣f̂(T )− δT,∅

2k+1

∣∣∣∣ ≤ 2−ζn, |T | ≤ εn.

Theorem 4 (Key property of random halfspaces) Fix an integer k ≥ 0 and reals ε, ζ ∈
(0, 1/2). Choose integers w1, w2, . . . , wn uniformly at random from {0, 1, . . . , 2k+1 − 1}. For
s ∈ Z, define fs : {0, 1}n → {0, 1} by

fs(x) = 1 ⇔
n∑

i=0

wixi ≡ s (mod 2k+1).

Then with probability at least 1− (k+1)2−n+H(ε)n+2ζn+k+1 over the choice of w1, w2, . . . , wn,
one has ∣∣∣∣f̂s(T )− δT,∅

2k+1

∣∣∣∣ ≤ 2−ζn, |T | ≤ εn, s ∈ Z.

Zeroing out correlations by a change of distribution

f, g : X → (R), X finite, then 〈f, g〉 = 1
|X|
∑

x∈X f(x)g(x).

Theorem 5 Let f, χ1, . . . , χk : X → {−1,+1} be given functions on a finite set X. Suppose
that

k∑
i=1

|〈f, χi〉| <
1

2
,

k∑
j=1,j 6=i

|〈χi, χj〉| ≤
1

2
, i = 1, 2, . . . , k.

Then there exists a probability distribution µ on X such that

Eµ[f(x)χi(x)] = 0, i = 1, 2, . . . , k.

Theorem 6 Let α > 0 be a sufficiently small absolute constant. Choose integers w1, w2, . . . , wn

uniformly at random from {0, 1, . . . , 2bαnc+1 − 1}. For s ∈ Z, define

Xs =

{
x ∈ {0, 1}n :

n∑
i=1

wixi ≡ s (mod 2bαnc + 1)

}
.

Then with probability at least 1−e−n/3 over the choice of w1, w2, . . . , wn, there is a distribution
µs on Xs (for each s) such that

Eµs [p(x)] = Eµt [p(x)]

for any s, t ∈ Z and any polynomial p of degree at most bαnc.
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Reduction to a univariate problem

Another tools: rational aproximation.

• deg p(x)/q(x) := max{deg(p),deg(q)}, where p, q are polynomials on Rn

• f : X → {−1,+1}, where X ⊆ Rn. For d ≥ 0 define

R(f, d) = inf
p,q

sup
x∈X

∣∣∣∣f(x)− p(x)

q(x)

∣∣∣∣ ,
where the infimum is over all polynomials p, q of degree up to d such that q|X 6≡ 0.

• R+(f, d) = infp,q supx∈X

∣∣∣f(x)− p(x)
q(x)

∣∣∣ where q is positive on X

• R+(f, 2d) ≤ R(f, d) ≤ R+(f, d)

• S ⊆ R: R+(S, d) = infp,q supx∈S

∣∣∣sgnx− p(x)
q(x)

∣∣∣
Theorem 7 (Sherstov) Let n, d be positive integers, R = R+({±1,±2, . . . ,±n}, d). For
1 ≤ d ≤ log n,

exp

{
−Θ

(
1

n1/(2d)

)}
≤ R < exp

{
− 1

n1/d

}
.

For log n < d < n,

R = exp

{
−Θ

(
1

log(2n/d)

)}
.

For d ≥ n, R = 0.

Theorem 8 (Sherstov) Let f : X → {−1,+1} and g : Y → {−1,+1} be given functions,
where X,Y ⊆ Rn are arbitrary finite sets. Assume that f and g are not identically false. Let
d = deg±(f ∧ g). Then

R+(f, 4d) +R+(g, 2d) < 1.

Proposition 9 Let n1, . . . , nk be positive integers, |x| := x1 + x2 + . . . + xn. Consider a
function F : {0, 1}n1×. . .×{0, 1}nk → {−1,+1} such that F (x1, . . . , xk) ≡ f(|x1|, . . . , |xk|) for
some f : {0, 1, . . . , n1}× . . .×{0, 1, . . . , nk} → {−1,+1}. Then for all d, R+(F, d) = R+(f, d).

Theorem 10 (Reduction to a univariate problem) Put k = bαnc, where α > 0 is the
absolute constant from Theorem 6. Choose w1, w2, . . . , wn ∈ {0, 1, . . . , 2bαnc+1 − 1} uniformly
at random. Define f : {0, 1}n × {0, 1, 2, . . . , n} → {−1,+1} by

f(x, t) = sgn

(
1

2
+

n∑
i=1

wixi − 2k+1t

)
.

Then with probability at least 1− e−n/3 over the choice of w1, w2, . . . , wn, one has

R+(f, d) ≥ R+({±1,±2, . . . ,±2k}, d), d = 0, 1, . . . , k.
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Theorem 11 Put k = bαnc, where α > 0 is the absolute constant from Theorem 6. Choose
w1, w2, . . . , wn uniformly at random from {0, 1, . . . , 2bαnc+1 − 1}. Define f : {0, 1}2n →
{−1,+1} by

f(x) = sgn

(
1

2
+

n∑
i=1

wixi − 2k+1
2n∑

i=n+1

xi

)
.

Then with probability at least 1− e−n/3 over the choice of w1, w2, . . . , wn, one has

R+(f, d) ≥ R+({±1,±2, . . . ,±2k}, d), d = 0, 1, . . . , k.

Now it is easy to prove the main result.

Theorem 12 (Main result) Fix sufficiently small absolute constants α > 0 and β = β(α) >
0. Choose integers w1, w2, . . . , wn ∈ {0, 1, . . . , 2bαnc+1 − 1} uniformly at random. Then with
probability at least 1− e−n/3, the function f : {0, 1}2n → {−1,+1} given by

f(x) = sgn

(
1

2
+

n∑
i=1

wixi − 2bαnc+1
2n∑

i=n+1

xi

)

obeys deg±(f ∧ f) ≥ bβnc.
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