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Definitions.
e Davenport—Schinzel sequence of order s ... sequence that contains

— no alternation a...b...a... of length s+ 2 for any pair of symbols a,b

— and no immediately repeated symbol (that is, no aa).
o \s(n) ...mazimum length of a Davenport-Schinzel sequence of order s on n
distinct symbols (considered as a function of n)
e block ... contiguous substring with only distinct symbols
o Ys(m,n) ... maximum length of a Davenport-Schinzel sequence of order s on
n distinct symbols that can be partitioned into m or fewer contiguous blocks
e ADS} (m)-sequence ... sequence that satisfies:

— It contains no alternation abab. .. of length s + 2.
— It is a concatenation of m blocks.

— Each symbol appears at least k times (so we have m > k).
o I3 (m) ... mazimum number of distinct symbols in an ADS;,(m)-sequence

Observation. A\;(n) =n and Aa(n) =2n—1

Lemma 1 (Agarwal, Sharir, and Shor 1989). Let ¢s_2(n) be a nondecreasing
function in n such that As_2(n) < nps_o(n) for all n. Then

As(n) < @s_a(n) - (¥s(2n,n) + 2n).
Lemma 2. For all s, n, m, and k we have

Ys(m,n) < k(II}(m) + n).

Theorem 1 (Klazar 1999). A3(n) < 2na(n) + O(ny/a(n))
Theorem 2. \3(n) > 2na(n) — O(n).
Theorem 3. Let s > 3 be fized, and let t = |(s — 2)/2]. Then

\ _n 2(1/ﬂ)a(")t+0(0‘(")t71)7 s even;
() n - 9(1/tha(n) log, a(”)‘*O(O‘(")t), s odd.

Theorem 4 (Agarwal, Sharir, and Shor 1989). Let t = |(s —2)/2]. Then,

As(n) >n - 2(1”1)0‘(”)20(0(")#1), s >4 even.

New proof of Theorem

Lemma 3. For all s > 1, m > s we have I13(m) = co.

Lemma 4. II3(m) =m — 1

Lemma 5. For all s > 2 we have I3, (m) < (777) = O(m*~1).

Recurrence 1. For every s > 3 and every k and m we have

113, 1 (2m) < 2II3;,  (m) + 210! (m).



Corollary 6. For every fized s > 2, if we let k =271 + 1, then
IT; (m) = O(m(log m)*~?)
(where the constant implicit in the O notation might depend on s).

Recurrence 2. Let t be an integer parameter, with t < \/m. Then,
) m
I (m) < (1+ )Hs()+ni_2(1+7)+3m.

Corollary 7. There exists an absolute constant ¢ such that, for every k > 2,
we have
I3, 1 (m) < emag(m) for all m.

Proof. Let mg be a large enough constant and ax(x), £ > 2, be given by
as(z) = as(x) = [log, ], and, for k > 3, by

G (x) 1, if x < mg;
ap(z) =
F 1+ @k (3ak—1(z)), otherwise.

There exists a constant ¢y such that |ag(z) — ax(x)] < ¢ for all k and «.
We will prove by induction on k£ > 2 that

I3, 1 (m) < cymay(m) for all m.

Lemma 8 (Klazar 1999). We have A\3(n) < ¥3(1+2n/¢,n)+ 3nl, where £ < n
is a free parameter.

Proof of Theorem [2.
e Z;(m) ...sequences with the following properties:
— Each symbol in Z4(m) appears exactly 2d + 1 times.
— Zq(m) contains no ababa. (But may contain a repetition.)
— Z4(m) is partitioned into blocks. Some of the blocks in Z4(m) are special.
— Each symbol makes its first and last occurrences in special blocks.
— Special blocks contain only first and last occurrences of symbols.
— Each special block in Z;(m) has length exactly m.

— For d > 2, each special block is surrounded by regular blocks on both
sides, and no regular block is surrounded by special blocks on both sides.
o We enclose regular blocks by ()’s, and special blocks by []’s.

Zi(m) =[12...m](m...20)[12...m] Z4(1) = O[1](1)(1)... (D[1]().
o 7' :=Zy(m—1).
o f:=S54(m —1) ...the number of special blocks in Z’
o /* = del(f)
e g:=S4_1(f) ...the number of special blocks in Z*
e Take one copy of Z* and g copies of Z’, each using its own symbols
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e Ny(m) ...number of distinct symbols in Zy(m)
o V3(m) ...average block length in Z4(m)

Lemma 9. A (m) < Ny(m) < Ag(m+c) (ford >3, m >2) and Vg(m) > m/2

e Thus Z4(d) has length Ng(d)a(Ng(d) — O(Ng(d)), no ababa and removal of
repetitions shortens it by at most a 2/N4(d)-fraction



