## Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations Gabriel Nivasch <br> Presented by Josef Cibulka

## Definitions.

- Davenport-Schinzel sequence of order $s$...sequence that contains
- no alternation $a \ldots b \ldots a \ldots$ of length $s+2$ for any pair of symbols $a, b$
- and no immediately repeated symbol (that is, no aa).
- $\lambda_{s}(n)$... maximum length of a Davenport-Schinzel sequence of order $s$ on $n$ distinct symbols (considered as a function of $n$ )
- block ...contiguous substring with only distinct symbols
- $\psi_{s}(m, n)$...maximum length of a Davenport-Schinzel sequence of order s on
$n$ distinct symbols that can be partitioned into $m$ or fewer contiguous blocks
- $\mathrm{ADS}_{k}^{s}(m)$-sequence . . . sequence that satisfies:
- It contains no alternation abab... of length $s+2$.
- It is a concatenation of $m$ blocks.
- Each symbol appears at least $k$ times (so we have $m \geq k$ ).
- $\Pi_{k}^{s}(m) \ldots$ maximum number of distinct symbols in an $\operatorname{ADS}_{k}^{s}(m)$-sequence

Observation. $\lambda_{1}(n)=n$ and $\lambda_{2}(n)=2 n-1$
Lemma 1 (Agarwal, Sharir, and Shor 1989). Let $\varphi_{s-2}(n)$ be a nondecreasing function in $n$ such that $\lambda_{s-2}(n) \leq n \varphi_{s-2}(n)$ for all $n$. Then

$$
\lambda_{s}(n) \leq \varphi_{s-2}(n) \cdot\left(\psi_{s}(2 n, n)+2 n\right)
$$

Lemma 2. For all $s, n, m$, and $k$ we have

$$
\psi_{s}(m, n) \leq k\left(\Pi_{k}^{s}(m)+n\right) .
$$

Theorem 1 (Klazar 1999). $\lambda_{3}(n) \leq 2 n \alpha(n)+O(n \sqrt{\alpha(n)})$
Theorem 2. $\lambda_{3}(n) \geq 2 n \alpha(n)-O(n)$.
Theorem 3. Let $s \geq 3$ be fixed, and let $t=\lfloor(s-2) / 2\rfloor$. Then

$$
\lambda_{s}(n) \leq \begin{cases}n \cdot 2^{(1 / t!) \alpha(n)^{t}+O\left(\alpha(n)^{t-1}\right)}, & \text { s even } ; \\ n \cdot 2^{(1 / t!) \alpha(n)^{t} \log _{2} \alpha(n)+O\left(\alpha(n)^{t}\right)}, & \text { s odd } .\end{cases}
$$

Theorem 4 (Agarwal, Sharir, and Shor 1989). Let $t=\lfloor(s-2) / 2\rfloor$. Then,

$$
\lambda_{s}(n) \geq n \cdot 2^{(1 / t!) \alpha(n)^{t}-O\left(\alpha(n)^{t-1}\right)}, \quad s \geq 4 \text { even } .
$$

## New proof of Theorem 1

Lemma 3. For all $s \geq 1, m \geq s$ we have $\Pi_{s}^{s}(m)=\infty$.
Lemma 4. $\Pi_{2}^{1}(m)=m-1$
Lemma 5. For all $s \geq 2$ we have $\Pi_{s+1}^{s}(m) \leq\binom{ m-2}{s-1}=O\left(m^{s-1}\right)$.
Recurrence 1. For every $s \geq 3$ and every $k$ and $m$ we have

$$
\Pi_{2 k-1}^{s}(2 m) \leq 2 \Pi_{2 k-1}^{s}(m)+2 \Pi_{k}^{s-1}(m)
$$

Corollary 6. For every fixed $s \geq 2$, if we let $k=2^{s-1}+1$, then

$$
\Pi_{k}^{s}(m)=O\left(m(\log m)^{s-2}\right)
$$

(where the constant implicit in the $O$ notation might depend on $s$ ).
Recurrence 2. Let $t$ be an integer parameter, with $t \leq \sqrt{m}$. Then,

$$
\Pi_{k}^{3}(m) \leq\left(1+\frac{m}{t}\right) \Pi_{k}^{3}(t)+\Pi_{k-2}^{3}\left(1+\frac{m}{t}\right)+3 m .
$$

Corollary 7. There exists an absolute constant $c$ such that, for every $k \geq 2$, we have

$$
\Pi_{2 k+1}^{3}(m) \leq c m \alpha_{k}(m) \quad \text { for all } m
$$

Proof. Let $m_{0}$ be a large enough constant and $\widehat{\alpha}_{k}(x), k \geq 2$, be given by $\widehat{\alpha}_{2}(x)=\alpha_{2}(x)=\left\lceil\log _{2} x\right\rceil$, and, for $k \geq 3$, by

$$
\widehat{\alpha}_{k}(x)= \begin{cases}1, & \text { if } x \leq m_{0} \\ 1+\widehat{\alpha}_{k}\left(3 \widehat{\alpha}_{k-1}(x)\right), & \text { otherwise }\end{cases}
$$

There exists a constant $c_{0}$ such that $\left|\widehat{\alpha}_{k}(x)-\alpha_{k}(x)\right| \leq c_{0}$ for all $k$ and $x$.
We will prove by induction on $k \geq 2$ that

$$
\Pi_{2 k+1}^{3}(m) \leq c_{1} m \widehat{\alpha}_{k}(m) \quad \text { for all } m
$$

Lemma 8 (Klazar 1999). We have $\lambda_{3}(n) \leq \psi_{3}(1+2 n / \ell, n)+3 n \ell$, where $\ell \leq n$ is a free parameter.

## Proof of Theorem 2,

- $Z_{d}(m) \ldots$ sequences with the following properties:
- Each symbol in $Z_{d}(m)$ appears exactly $2 d+1$ times.
$-Z_{d}(m)$ contains no ababa. (But may contain a repetition.)
$-Z_{d}(m)$ is partitioned into blocks. Some of the blocks in $Z_{d}(m)$ are special.
- Each symbol makes its first and last occurrences in special blocks.
- Special blocks contain only first and last occurrences of symbols.
- Each special block in $Z_{d}(m)$ has length exactly $m$.
- For $d \geq 2$, each special block is surrounded by regular blocks on both sides, and no regular block is surrounded by special blocks on both sides.
- We enclose regular blocks by ( )'s, and special blocks by []'s.

$$
Z_{1}(m)=[12 \ldots m](m \ldots 21)[12 \ldots m] \quad Z_{d}(1)=()[1](1)(1) \ldots(1)[1]()
$$

- $Z^{\prime}:=Z_{d}(m-1)$.
- $f:=S_{d}(m-1) \ldots$ the number of special blocks in $Z^{\prime}$
- $Z^{*}:=Z_{d-1}(f)$
- $g:=S_{d-1}(f) \ldots$ the number of special blocks in $Z^{*}$
- Take one copy of $Z^{*}$ and $g$ copies of $Z^{\prime}$, each using its own symbols

- $N_{d}(m) \ldots$ number of distinct symbols in $Z_{d}(m)$
- $V_{d}(m) \ldots$ average block length in $Z_{d}(m)$

Lemma 9. $A_{d}(m) \leq N_{d}(m) \leq A_{d}(m+c)($ for $d \geq 3, m \geq 2)$ and $V_{d}(m) \geq m / 2$

- Thus $Z_{d}(d)$ has length $N_{d}(d) \alpha\left(N_{d}(d)-O\left(N_{d}(d)\right)\right.$, no ababa and removal of repetitions shortens it by at most a $2 / N_{d}(d)$-fraction

