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Definitions.
• Davenport–Schinzel sequence of order s . . . sequence that contains
− no alternation a . . . b . . . a . . . of length s+ 2 for any pair of symbols a, b
− and no immediately repeated symbol (that is, no aa).

• λs(n) . . . maximum length of a Davenport–Schinzel sequence of order s on n
distinct symbols (considered as a function of n)
• block . . . contiguous substring with only distinct symbols
• ψs(m,n) . . . maximum length of a Davenport–Schinzel sequence of order s on
n distinct symbols that can be partitioned into m or fewer contiguous blocks
• ADSsk(m)-sequence . . . sequence that satisfies:
− It contains no alternation abab . . . of length s+ 2.
− It is a concatenation of m blocks.
− Each symbol appears at least k times (so we have m ≥ k).

• Πs
k(m) . . . maximum number of distinct symbols in an ADSsk(m)-sequence

Observation. λ1(n) = n and λ2(n) = 2n− 1

Lemma 1 (Agarwal, Sharir, and Shor 1989). Let ϕs−2(n) be a nondecreasing
function in n such that λs−2(n) ≤ nϕs−2(n) for all n. Then

λs(n) ≤ ϕs−2(n) ·
(
ψs(2n, n) + 2n

)
.

Lemma 2. For all s, n, m, and k we have

ψs(m,n) ≤ k
(
Πs
k(m) + n

)
.

Theorem 1 (Klazar 1999). λ3(n) ≤ 2nα(n) +O
(
n
√
α(n)

)
Theorem 2. λ3(n) ≥ 2nα(n)−O(n).

Theorem 3. Let s ≥ 3 be fixed, and let t = b(s− 2)/2c. Then

λs(n) ≤

{
n · 2(1/t!)α(n)t+O(α(n)t−1), s even;

n · 2(1/t!)α(n)t log2 α(n)+O(α(n)t), s odd.

Theorem 4 (Agarwal, Sharir, and Shor 1989). Let t = b(s− 2)/2c. Then,

λs(n) ≥ n · 2(1/t!)α(n)t−O(α(n)t−1), s ≥ 4 even.

New proof of Theorem 1.

Lemma 3. For all s ≥ 1, m ≥ s we have Πs
s(m) =∞.

Lemma 4. Π1
2(m) = m− 1

Lemma 5. For all s ≥ 2 we have Πs
s+1(m) ≤

(
m−2
s−1

)
= O

(
ms−1

)
.

Recurrence 1. For every s ≥ 3 and every k and m we have

Πs
2k−1(2m) ≤ 2Πs

2k−1(m) + 2Πs−1
k (m).
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Corollary 6. For every fixed s ≥ 2, if we let k = 2s−1 + 1, then

Πs
k(m) = O

(
m(logm)s−2

)
(where the constant implicit in the O notation might depend on s).

Recurrence 2. Let t be an integer parameter, with t ≤
√
m. Then,

Π3
k(m) ≤

(
1 +

m

t

)
Π3
k(t) + Π3

k−2

(
1 +

m

t

)
+ 3m.

Corollary 7. There exists an absolute constant c such that, for every k ≥ 2,
we have

Π3
2k+1(m) ≤ cmαk(m) for all m.

Proof. Let m0 be a large enough constant and α̂k(x), k ≥ 2, be given by
α̂2(x) = α2(x) = dlog2 xe, and, for k ≥ 3, by

α̂k(x) =

{
1, if x ≤ m0;
1 + α̂k

(
3α̂k−1(x)

)
, otherwise.

There exists a constant c0 such that |α̂k(x)− αk(x)| ≤ c0 for all k and x.
We will prove by induction on k ≥ 2 that

Π3
2k+1(m) ≤ c1mα̂k(m) for all m.

Lemma 8 (Klazar 1999). We have λ3(n) ≤ ψ3(1 + 2n/`, n) + 3n`, where ` ≤ n
is a free parameter.

Proof of Theorem 2.
• Zd(m) . . . sequences with the following properties:
− Each symbol in Zd(m) appears exactly 2d+ 1 times.
− Zd(m) contains no ababa. (But may contain a repetition.)
− Zd(m) is partitioned into blocks. Some of the blocks in Zd(m) are special.
− Each symbol makes its first and last occurrences in special blocks.
− Special blocks contain only first and last occurrences of symbols.
− Each special block in Zd(m) has length exactly m.
− For d ≥ 2, each special block is surrounded by regular blocks on both

sides, and no regular block is surrounded by special blocks on both sides.
• We enclose regular blocks by ( )’s, and special blocks by [ ]’s.

Z1(m) = [12 . . .m](m. . . 21)[12 . . .m] Zd(1) = ( )[1](1)(1) . . . (1)[1]( ).

• Z ′ := Zd(m− 1).
• f := Sd(m− 1) . . . the number of special blocks in Z ′

• Z∗ := Zd−1(f)
• g := Sd−1(f) . . . the number of special blocks in Z∗

• Take one copy of Z∗ and g copies of Z ′, each using its own symbols

• Nd(m) . . . number of distinct symbols in Zd(m)
• Vd(m) . . . average block length in Zd(m)

Lemma 9. Ad(m) ≤ Nd(m) ≤ Ad(m+c) (for d ≥ 3, m ≥ 2) and Vd(m) ≥ m/2
• Thus Zd(d) has length Nd(d)α(Nd(d) − O(Nd(d)), no ababa and removal of
repetitions shortens it by at most a 2/Nd(d)-fraction
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