Improved bounds and new techniques for Davenport–Schinzel sequences and their generalizations

Gabriel Nivasch

Presented by Josef Cibulka

Definitions.

- Davenport-Schinzel sequence of order s ... sequence that contains
 - no alternation $a \dots b \dots a \dots$ of length s + 2 for any pair of symbols a, b- and no immediately repeated symbol (that is, no aa).
- $\lambda_s(n)$... maximum length of a Davenport-Schinzel sequence of order s on n distinct symbols (considered as a function of n)
- block ... contiguous substring with only distinct symbols
- $\psi_s(m,n)$... maximum length of a Davenport-Schinzel sequence of order s on
- n distinct symbols that can be partitioned into m or fewer contiguous blocks
- $ADS_k^s(m)$ -sequence ... sequence that satisfies:
 - It contains no alternation abab... of length s + 2.
 - It is a concatenation of m blocks.
 - Each symbol appears at least k times (so we have $m \ge k$).
- $\Pi_k^s(m)$... maximum number of distinct symbols in an $ADS_k^s(m)$ -sequence

Observation. $\lambda_1(n) = n$ and $\lambda_2(n) = 2n - 1$

Lemma 1 (Agarwal, Sharir, and Shor 1989). Let $\varphi_{s-2}(n)$ be a nondecreasing function in n such that $\lambda_{s-2}(n) \leq n\varphi_{s-2}(n)$ for all n. Then

$$\lambda_s(n) \le \varphi_{s-2}(n) \cdot \big(\psi_s(2n,n) + 2n\big).$$

Lemma 2. For all s, n, m, and k we have

$$\psi_s(m,n) \le k \big(\Pi_k^s(m) + n \big).$$

Theorem 1 (Klazar 1999). $\lambda_3(n) \leq 2n\alpha(n) + O(n\sqrt{\alpha(n)})$

Theorem 2. $\lambda_3(n) \geq 2n\alpha(n) - O(n)$.

Theorem 3. Let $s \ge 3$ be fixed, and let $t = \lfloor (s-2)/2 \rfloor$. Then

$$\lambda_s(n) \leq \begin{cases} n \cdot 2^{(1/t!)\alpha(n)^t + O\left(\alpha(n)^{t-1}\right)}, & s \text{ even}; \\ n \cdot 2^{(1/t!)\alpha(n)^t \log_2 \alpha(n) + O\left(\alpha(n)^t\right)}, & s \text{ odd.} \end{cases}$$

Theorem 4 (Agarwal, Sharir, and Shor 1989). Let $t = \lfloor (s-2)/2 \rfloor$. Then,

$$\lambda_s(n) \ge n \cdot 2^{(1/t!)\alpha(n)^t - O\left(\alpha(n)^{t-1}\right)}, \quad s \ge 4 \text{ even.}$$

New proof of Theorem 1.

Lemma 3. For all $s \ge 1$, $m \ge s$ we have $\prod_{s=1}^{s} (m) = \infty$.

Lemma 4. $\Pi_2^1(m) = m - 1$

Lemma 5. For all $s \ge 2$ we have $\prod_{s=1}^{s} (m) \le \binom{m-2}{s-1} = O(m^{s-1})$.

Recurrence 1. For every $s \ge 3$ and every k and m we have

$$\Pi_{2k-1}^{s}(2m) \le 2\Pi_{2k-1}^{s}(m) + 2\Pi_{k}^{s-1}(m).$$

Corollary 6. For every fixed $s \ge 2$, if we let $k = 2^{s-1} + 1$, then $\Pi_{k}^{s}(m) = O(m(\log m)^{s-2})$

(where the constant implicit in the O notation might depend on s).

Recurrence 2. Let t be an integer parameter, with $t \leq \sqrt{m}$. Then,

$$\Pi_k^3(m) \le \left(1 + \frac{m}{t}\right) \Pi_k^3(t) + \Pi_{k-2}^3 \left(1 + \frac{m}{t}\right) + 3m.$$

Corollary 7. There exists an absolute constant c such that, for every $k \ge 2$, we have

$$\Pi_{2k+1}^3(m) \le cm\alpha_k(m) \qquad \text{for all } m$$

Proof. Let m_0 be a large enough constant and $\hat{\alpha}_k(x)$, $k \ge 2$, be given by $\hat{\alpha}_2(x) = \alpha_2(x) = \lceil \log_2 x \rceil$, and, for $k \ge 3$, by

$$\widehat{\alpha}_k(x) = \begin{cases} 1, & \text{if } x \le m_0; \\ 1 + \widehat{\alpha}_k \big(3 \widehat{\alpha}_{k-1}(x) \big), & \text{otherwise.} \end{cases}$$

There exists a constant c_0 such that $|\widehat{\alpha}_k(x) - \alpha_k(x)| \le c_0$ for all k and x. We will prove by induction on $k \ge 2$ that

$$\Pi_{2k+1}^3(m) \le c_1 m \widehat{\alpha}_k(m) \qquad \text{for all } m.$$

Lemma 8 (Klazar 1999). We have $\lambda_3(n) \leq \psi_3(1+2n/\ell,n)+3n\ell$, where $\ell \leq n$ is a free parameter.

Proof of Theorem 2.

- $Z_d(m)$... sequences with the following properties:
 - Each symbol in $Z_d(m)$ appears exactly 2d + 1 times.
 - $-Z_d(m)$ contains no *ababa*. (But may contain a repetition.)
 - $-Z_d(m)$ is partitioned into blocks. Some of the blocks in $Z_d(m)$ are special.
 - Each symbol makes its first and last occurrences in special blocks.
 - Special blocks contain only first and last occurrences of symbols.
 - Each special block in $Z_d(m)$ has length exactly m.

– For $d \ge 2$, each special block is surrounded by regular blocks on both sides, and *no* regular block is surrounded by special blocks on both sides.

• We enclose regular blocks by ()'s, and special blocks by []'s.

$$Z_1(m) = [12\dots m](m\dots 21)[12\dots m] \quad Z_d(1) = ()1(1)\dots (1)[1]().$$

•
$$Z' := Z_d(m-1)$$

• $f := S_d(m-1)$... the number of special blocks in Z'

•
$$Z^* := Z_{d-1}(f)$$

- $g := S_{d-1}(f) \dots$ the number of special blocks in Z^*
- Take one copy of Z^* and g copies of Z', each using its own symbols

- $N_d(m)$... number of distinct symbols in $Z_d(m)$
- $V_d(m)$... average block length in $Z_d(m)$

Lemma 9. $A_d(m) \le N_d(m) \le A_d(m+c)$ (for $d \ge 3$, $m \ge 2$) and $V_d(m) \ge m/2$

• Thus $Z_d(d)$ has length $N_d(d)\alpha(N_d(d) - O(N_d(d)))$, no ababa and removal of repetitions shortens it by at most a $2/N_d(d)$ -fraction