Asymptotically optimal frugal colouring

M. Molloy, B. Reed
presented by Tomáš Valla

November 4, 2010

1 Introduction and motivation

- A proper vertex coloring is β-frugal if no vertex has more than β members of any colour class in its neighbourhood.

Theorem 1 There exists a constant Δ_{0} such that every graph with maximum degree $\Delta \geq \Delta_{0}$ has a $(50 \log \Delta / \log \log \Delta)$-frugal $(\Delta+1)$-colouring.

- Motivation: total colouring
- History: Proved for $\beta=O\left(\log ^{8} \Delta\right)$ and later for $\beta=O\left(\log ^{2} \Delta / \log \log \Delta\right)$.
- Alon: class of examples that do not have a $(\log \Delta / \log \log \Delta)$-frugal $(\Delta+1)$-colouring.
- Proving the existence of frugal colouring is quite easy (using Lovasz Local Lemma) if we do not require proper colouring.

2 Dense decomposition

Assume G is Δ-regular. There exists a dense decomposition of G into dense sets D_{1}, \ldots, D_{ℓ} and a collection S of sparse vertices. Let $\varepsilon=10^{-6}$. The dense decomposition has the following properties. For every D_{i}

1. $\Delta-5 \varepsilon \Delta<\left|D_{i}\right|<\Delta+2 \varepsilon \Delta$
2. there are at most $4 \varepsilon \Delta^{2}$ edges from D_{i} to $G-D_{i}$
3. every $v \in S$ has at least $\varepsilon\binom{\Delta}{2}$ pairs of non-adjacent vertices in its neighbourhood
4. each vertex is in D_{i} iff it has at least $\frac{3}{4} \Delta$ neighbours in D_{i}

Let $D=\bigcup_{i=1}^{\ell} D_{i}$. We colour each D_{i} by partitioning it into a set of classes C_{i} each of size 1 or 2 . The properties are

1. $\Delta-15 \varepsilon \Delta \leq\left|C_{i}\right| \leq \Delta+1$
2. each class in C_{i} has at most $(1 / 4+4 \sqrt{\varepsilon}) \Delta<\Delta / 3$ external neighbours

More definitions:

- for $v \in D_{i}$, Out $_{v}$ is the set of neighbours of v that are not in D_{i} (called external neighbours of v)
- D_{i} is ornery if $\left|C_{i}\right|>\Delta-\log ^{4} \Delta$

For ornery D_{i} we define

- kernel K_{i}, the set of vertices in D_{i} with at most $\log ^{6} \Delta$ external neighbours
- $B i g_{i}$ is the set of vertices outside D_{i} which have at least $\Delta^{7 / 8}$ neighbours in D_{i}
- $\operatorname{Notbig}(i, x)$ is the set of vertices in D_{i} which do not have any external neighbours in $G-B i g_{i}$ with colour x.
- u, v are big-neighbours if they are both in $B i g_{i}$ for some i

More properties:

1. Every vertex in G has at most $\Delta^{1 / 4} \log ^{7} \Delta$ big-neighbours.

3 Random colouring procedure

First of all, create the dense decomposition of G.

3.1 Phase 1 (Initial colouring)

All random choices are made independently.

1. Assign a uniformly random colour from $\{1, \ldots, \Delta+1\}$ to each $v \in S$.
2. For each D_{i} use $\left|C_{i}\right|$ colours uniformly from $\{1, \ldots, \Delta+1\}$ and then assign a random permutation of those colours to C_{i}.
3. Let $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)\right\}$ be the set of all pairs of neighbours or big-neighbours that are assigned the same colour. For each pair in that set choose one member, uniformly at random, to correct. To correct $v \in S$, uncolour v. To correct $v \in D$, label v as being temporarily coloured.

More definitions:

- $U \subseteq S$ is the vertices of S uncoloured in Step 3
- $T e m p_{i}$ is the set of vertices of D_{i} that are labelled as temporarily coloured
- Temp* ${ }_{i}^{*}$ is the set of $u \in D_{i}$ such that $\{u, v\} \in C_{i}$ for some $v \in T e m p_{i}$
- $T e m p_{i}^{+} \subseteq T e m p_{i}^{*}$ is the set of vertices $u \in D_{i}$ such that $\{u, v\} \in C_{i}$ for some $v \in T e m p_{i}$ with $\left|O u t_{v}\right|<\left|O u t_{u}\right|$
- $\operatorname{Temp}_{i}(a)$ is the set $v \in T e m p_{i}$ with $\left|O u t_{v}\right| \leq a$
- Temp $=\bigcup T e m p_{i}$

All vertices in Temp will be recoloured during Phase 2 and 3. Vertices of $T e m p^{*}$ might be also be recoloured during Phase 2.

For each ornery D_{i} we will recolour the vertices in $T e m p_{i} \cap K_{i}$ during Phase 2 by swapping their colours with other vertices in D_{i}. To do this, we need one more step

4 For each ornery D_{i} we select uniformly at random a set F_{i} of $\frac{9}{10} \Delta$ of the vertices of K_{i} that are classes of size one in C_{i}.
F is the union over all ornery D_{i} of F_{i}.
Lemma 1 (Properties of Phase 1 colouring) With positive probability

1. every $v \in S$ has at least $\frac{\varepsilon}{10^{9}} \Delta$ colours that appear twice in $N(v)-\left(U \cup T e m p \cup T e m p^{*} \cup F\right)$.
2. every $v \in D$ with $\left|O u t_{v}\right| \geq \log ^{3} \Delta$ has at least $\frac{\varepsilon}{10^{9}}\left|O u t_{v}\right|$ colours that appear twice in $N(v)-$ $\left(U \cup T e m p \cup T e m p^{*} \cup F\right)$.
3. for each D_{i} and $a \in\left\{\left\lceil\log ^{3} \Delta\right\rceil, \ldots, \Delta\right\}$, we have $\left|\operatorname{Temp}_{i}(a)\right| \leq 2 a$
4. for each $v \in G$, no colour is assigned to more that $20 \log \Delta / \log \log \Delta$ vertices in $N(v)$
5. for each colour x and ornery $D_{i},|\operatorname{Notbig}(i, x)| \leq \Delta^{19 / 20}$
6. for each vertex $v \in G$,

$$
\sum_{u \in N(v) \cap\left(T e m p \cup T e m p^{+}\right)} \frac{1}{\max \left(\left|O u t_{u}\right|, \log ^{3} \Delta\right)} \leq 299999 .
$$

3.2 Phase 2 (Kernels of the ornery dense sets)

Here we colour all vertices in kernels, that have the same colour as a neighbour. Consider any ornery D_{i} and any $v \in T e m p_{i}\left(\log ^{6} \Delta\right)$. We will recolour v by swapping its colour with a suitable vertex in F_{i}. There are several conditions on vertices that are swapped with - we omit all details, but the conditions are that a single swap will not create a conflict. From these Swappable vertices we select 20 members uniformly at random - call them candidates. However, only some of these will not create conflicts by making multiple swaps.

We omit all details.
Lemma 2 (Properties of Phase 2 colouring) With positive probability

1. for each ornery D_{i}, every vertex in $T e m p_{i}\left(\log ^{6} \Delta\right)$ has a good candidate
2. for each vertex $v \in G$ and each colour x, at most $20 \log \Delta / \log \log \Delta$ neighbours of v have a candidate with colour x or are a candidate of a vertex with colour x.

3.3 Phase 3 (Completing the colouring)

$L(u)$ denotes the set of colours that do not appear on neighbours of u.

1. Uncolour every vertex in Temp.
2. Let v_{1}, \ldots, v_{ℓ} be and ordering of uncoloured vertices such that the vertices of Temp appear in non-decreasing order of $\left|O u t_{v}\right|$.
3. For $i=1$ to ℓ, assign to v_{i} a colour chosen uniformly at random from $L\left(v_{i}\right)$.

We define

- for $v \in U, Q(v)=\frac{\varepsilon}{10^{9}} \Delta$
- for $v \in \operatorname{Temp}, Q(v)=\frac{\varepsilon}{10^{9}} \max \left\{\left|O u t_{v}\right|, \log ^{3} \Delta\right\}$

Lemma 3 1. when we colour $v \in U \cup T e m p$, we have $|L(v)| \geq Q(v)$
2. for each vertex $v \in G$

$$
\sum_{u \in N(v) \cap(U \cup T e m p)} \frac{1}{Q(u)} \leq \frac{3 \cdot 10^{14}}{\varepsilon}
$$

Lemma 4 (Properties of Phase 3 colouring) With positive probability, for each $v \in G$ and each colour x, at most $4 \log \Delta / \log \log \Delta$ neighbours of v are assigned x during Phase 3.

The tool used is
Lemma 5 (Lopsided Local Lemma) Let $A=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of random events. Suppose that for each A_{i} we have a subset $B_{i} \subseteq A$ such that

1. for any subset $B \subset A-B_{i}$,

$$
P\left[A_{i} \mid \bigcap_{A_{j} \in B} \overline{A_{j}}\right] \leq p
$$

2. $\left|B_{i}\right| \leq d$
3. $p d \leq 1 / 4$

Then $P\left[\overline{A_{1}} \cap \ldots \cap \overline{A_{n}}\right]>0$.
Lemma 6 For every $u \in(U \cup T e m p)-N(v)$, choose any colour $c(u) \in L_{0}(v)$ such that for every adjacent u_{1}, u_{2} we have $c\left(u_{1}\right) \neq c\left(u_{2}\right)$. Conditioning on the event that each such u is assigned $c(u)$ during Phase 3, the conditional probability of $A(v)$ is at most $\Delta^{-2} / 4$.

Lemma 7 Consider any set of vertices w_{1}, \ldots, w_{t} and any colour x. For every $u \in U \cup T e m p-$ $\left\{w_{1}, \ldots, w_{t}\right\}$, choose any colour $c(u) \in L_{0}(u)$ such that for every adjacent u_{1}, u_{2} we have $c\left(u_{1}\right) \neq$ $c\left(u_{2}\right)$. Conditioning on the event that each such u is assigned $c(u)$ during Phase 3, the conditional probability that w_{1}, \ldots, w_{t} are all assigned x is at most $e^{6 \cdot 10^{14} t / \varepsilon} \cdot \prod_{i=1}^{t} 1 / Q\left(w_{i}\right)$.

