
Approximate kernel clustering - A. Naor, S. Khot
predigested and performed by Marek Krčál

KernelClustering
Input: A = (aij) ∈ Rn×n, B = (blp) ∈ Rk×k,
A,B are PSD
Output: σ : [n]→ [k]
Goal: maximize

∑n
i,j=1 aijbσ(i),σ(j)

Algorithm-s, s = 2, 3, . . .

1. Compute v1, . . . , vk ∈ Rk s.t. 〈vl, vp〉 = blp
(Cholesky decomposition)

2. Compute the smallest ball B = (wB, RB)
containing v1, . . . , vk

3. Solve: SDP:=max{∑n
i,j=1 aij〈u+RBxi, u+RBxj〉|

u, x1, . . . , xn ∈ Rn+1, ‖u‖22 = ‖wB‖22,∀i : ‖xi‖22 ≤ 1}

4. Find S ⊆ [k], |S| = s
maximizing

∑
l∈S ‖vl − v‖22 where v =

∑
p∈S vp/s

5. Choose random indep. Gaussian gl ∈ Rn+1 for l ∈ S

6. Let σ(i) = l whenever 〈x∗i , gl〉 = maxp∈S〈x∗i , gp〉

7. Output σ

Theorem. Let σ : [n] → [k] be given by the
Algorithm-s on matrices A and B where A is centered,
i.e.

∑n
i,j=1 aij = 0.Then it holds true

E

∑
i,j

aijbσ(i)σ(j)

 ≥ Rs
1

∑
l∈S ‖vl − v‖22

(s− 1)R2
B

OPT,

where R
(s)
1 is a positive constant and OPT =

Clust(A|B) is the optimum of the KernelCluster-
ing problem. In the case of Algorithm-2 we have

R
(2)
1 = 1/π and we have

Clust(A|B) ≤ π(1− 1/k)E

 n∑
i,j=1

aijbσiσj

 .
(It can be further proved that the best bounds from
the Theorem are obtained for s = 2 or s = 3!)
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Outline:

1. SDP≥ Clust(A|B)

2. WLOG ‖x∗i ‖22 = 1 for every i = 1, . . . , n

3. SDP= R2
B

∑n
i,j=1 aij〈x∗i , x∗j〉

4. To prove Theorem, it suffices to show

5. Similarly to MAX-CUT, we evaluate ex-
pected contribution for every pair of indices
i, j separately. We want to show that

E[bσ(i)σ(j)] = ‖v‖22+
∑
l∈S ‖vl − v‖22
s− 1

∞∑
m=1

R(s)
m

n∑
i,j=1

〈x∗i , x∗j〉m.

6. To get 5. we start by using the symmetry of
gl’s (independent and identicaly distributed):

E[bσ(i)σ(j)] = Pr[σ(i) = σ(j)]
∑
l∈S

bll/s+(1−Pr[σ(i) = σ(j)])
∑
l 6=p

blp/(s(s−1))

and proceed with terrible computations.
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