predigested and performed by Marek Krčál

KernelClustering

Input: $A=\left(a_{i j}\right) \in \mathrm{R}^{n \times n}, B=\left(b_{l p}\right) \in \mathrm{R}^{k \times k}$,
A, B are PSD
Output: $\sigma:[n] \rightarrow[k]$
Goal: maximize $\sum_{i, j=1}^{n} a_{i j} b_{\sigma(i), \sigma(j)}$

Theorem. Let $\sigma:[n] \rightarrow[k]$ be given by the Algorithm- s on matrices A and B where A is centered, i.e. $\sum_{i, j=1}^{n} a_{i j}=0$. Then it holds true

$$
\mathbf{E}\left[\sum_{i, j} a_{i j} b_{\sigma(i) \sigma(j)}\right] \geq \frac{R_{1}^{s} \sum_{l \in S}\left\|v_{l}-v\right\|_{2}^{2}}{(s-1) R_{B}^{2}} O P T
$$

where $R_{1}^{(s)}$ is a positive constant and $O P T=$ Clust $(A \mid B)$ is the optimum of the KernelClustering problem. In the case of Algorithm-2 we have $R_{1}^{(2)}=1 / \pi$ and we have

Algorithm- $s, s=2,3, \ldots$

1. Compute $v_{1}, \ldots, v_{k} \in \mathrm{R}^{k}$ s.t. $\left\langle v_{l}, v_{p}\right\rangle=b_{l p}$ (Cholesky decomposition)
2. Compute the smallest ball $B=\left(w_{B}, R_{B}\right)$ containing v_{1}, \ldots, v_{k}
3. Solve: SDP: $=\max \left\{\sum_{i, j=1}^{n} a_{i j}\left\langle u+R_{B} x_{i}, u+R_{B} x_{j}\right\rangle \mid\right.$ $\left.u, x_{1}, \ldots, x_{n} \in \mathrm{R}^{n+1},\|u\|_{2}^{2}=\left\|w_{B}\right\|_{2}^{2}, \forall i:\left\|x_{i}\right\|_{2}^{2} \leq 1\right\}$
4. Find $S \subseteq[k],|S|=s$ maximizing $\sum_{l \in S}\left\|v_{l}-v\right\|_{2}^{2}$ where $v=\sum_{p \in S} v_{p} / s$
5. Choose random indep. Gaussian $g_{l} \in \mathrm{R}^{n+1}$ for $l \in S$
6. Let $\sigma(i)=l$ whenever $\left\langle x_{i}^{*}, g_{l}\right\rangle=\max _{p \in S}\left\langle x_{i}^{*}, g_{p}\right\rangle$
7. Output σ

Outline:

1. $\mathrm{SDP} \geq \operatorname{Clust}(A \mid B)$
2. WLOG $\left\|x_{i}^{*}\right\|_{2}^{2}=1$ for every $i=1, \ldots, n$
3. $\mathrm{SDP}=R_{B}^{2} \sum_{i, j=1}^{n} a_{i j}\left\langle x_{i}^{*}, x_{j}^{*}\right\rangle$
4. To prove Theorem, it suffices to show
5. Similarly to MAX-CUT, we evaluate expected contribution for every pair of indices
 i, j separately. We want to show that
$\mathrm{E}\left[b_{\sigma(i) \sigma(j)}\right]=\|v\|_{2}^{2}+\frac{\sum_{l \in S}\left\|v_{l}-v\right\|_{2}^{2}}{s-1} \sum_{m=1}^{\infty} R_{m}^{(s)} \sum_{i, j=1}^{n}\left\langle x_{i}^{*}, x_{j}^{*}\right\rangle^{m}$.
6. To get 5 . we start by using the symmetry of g_{l} 's (independent and identicaly distributed):
$\mathrm{E}\left[b_{\sigma(i) \sigma(j)}\right]=\operatorname{Pr}[\sigma(i)=\sigma(j)] \sum_{l \in S} b_{l l} / s+(1-\operatorname{Pr}[\sigma(i)=\sigma(j)]) \sum_{l \neq p} b_{l p} /(s(s-1))$
and proceed with terrible computations.
