A separator theorem for string graphs and its applications

Jacob Fox and János Pach Presented by Josef Cibulka

Definitions.

• String graph is the intersection graph of continuous arcs in the plane.

• Set $S \subset V(G)$ is a separator in G with respect to weights $w : V(G) \to \mathbb{R}_{\geq 0}$ (satisfying w(V) = 1), if there is a partition $V(G) = S \cup V_1 \cup V_2$ such that $w(V_1), w(V_2) \leq 2/3$ and $E(V_1, V_2) = \emptyset$.

The size of the separator is the number of its vertices.

- Bisection width: $b_w(G) := \min\{|E(V_1, V_2)| : V_1 \cup V_2 = V, w(V_1), w(V_2) \le 2/3\}$
- $b(G) := b_w(G)$ with w(v) = 1/|V|
- Pair-crossing number, pcr(G), is the least number of pairs of edges that intersect in a drawing of G.

Theorem 1. Every weighted string graph has a separator of size $O(m^{3/4}\sqrt{\log(m)})$.

Proof. Separator := vertices of degree at least $m^{1/4}/\sqrt{\log(m)}$ and vertices of the separator from the following lemma.

Lemma 1. Every weighted string graph with maximum degree Δ has a separator of size $O(\Delta \sqrt{m} \log(m))$.

Proof. string graph $G \to \text{topological graph } T$ (i. e., drawn in the plane):

V(T) ... one vertex for each edge of G (pair of crossing arcs)

E(T) ... parts of the arcs between vertices

Weight of each vertex γ of G is equally distributed among vertices of T lying on γ .

Theorem 2 (Kolman and Matoušek, 2004).

$$b(G) \le c \log(n)(\sqrt{pcr(G)} + \sqrt{ssqd(G)}),$$

where $ssqd(G) := \sum_{i=1}^{n} deg(v_i)^2$ and c is an absolute constant.

Corollary 3.

$$b_w(G) = O\left(\sqrt{n}\log(n)\left(\sqrt{dD} + d\right)\right),$$

where d is the maximum degree and D is the maximum number of other edges that an edge crosses.

Apply Corollary 3 on T.

Separator of $G := \operatorname{arcs} whose at least one part is in the bisector of T. <math display="inline">\Box$

Conjecture (Fox, Pach, Tóth). Every weighted string graph has a separator of size $O(\sqrt{m})$.

Theorem 4. $\forall \varepsilon > 0 \quad \exists g(\varepsilon) \text{ such that every string graph with girth at least <math>g(\varepsilon)$ has at most $(1 + \varepsilon)n$ edges.

Lemma 2 (Pach and Sharir, 2009). $K_{t,t}$ -free string graphs have at most $n \log(n)^{c_t}$ edges.

Lemma 3. Let $\alpha > 0$ and \mathcal{F} be a hereditary family of graphs with separators of size $O(n/\log(n)^{1+\alpha})$.

Then $\forall \varepsilon > 0 \quad \exists g(\varepsilon) \text{ such that every graph in } \mathcal{F} \text{ with girth at least } g(\varepsilon)$ has at most $(1 + \varepsilon)n$ edges.

Lemma 4. Let $\varepsilon > 0$, g positive integer and let $\phi(n)$ be a decreasing nonnegative function satisfying

$$\phi(g) \leq \frac{1}{12} \quad and \quad \prod_{i=0}^{\infty} (1 + \phi(\lceil (4/3)^i g \rceil)) \leq 1 + \varepsilon$$

Graphs from an $n\phi(n)$ -separable hereditary family with girth at least g have fewer than $(1 + \varepsilon)n$ edges.