A separator theorem for string graphs and its applications

Jacob Fox and János Pach
Presented by Josef Cibulka

Definitions.

- String graph is the intersection graph of continuous arcs in the plane.
- Set $S \subset V(G)$ is a separator in G with respect to weights $w: V(G) \rightarrow \mathbb{R}_{\geq 0}$ (satisfying $w(V)=1$), if there is a partition $V(G)=S \cup V_{1} \cup V_{2}$ such that $w\left(V_{1}\right), w\left(V_{2}\right) \leq 2 / 3$ and $E\left(V_{1}, V_{2}\right)=\emptyset$.
The size of the separator is the number of its vertices.
- Bisection width:
$b_{w}(G):=\min \left\{\left|E\left(V_{1}, V_{2}\right)\right|: V_{1} \cup V_{2}=V, w\left(V_{1}\right), w\left(V_{2}\right) \leq 2 / 3\right\}$
- $b(G):=b_{w}(G)$ with $w(v)=1 /|V|$
- Pair-crossing number, $\operatorname{pcr}(G)$, is the least number of pairs of edges that intersect in a drawing of G.
Theorem 1. Every weighted string graph has a separator of size $O\left(m^{3 / 4} \sqrt{\log (m)}\right)$.
Proof. Separator := vertices of degree at least $m^{1 / 4} / \sqrt{\log (m)}$ and vertices of the separator from the following lemma.
Lemma 1. Every weighted string graph with maximum degree Δ has a separator of size $O(\Delta \sqrt{m} \log (m))$.
Proof. string graph $G \rightarrow$ topological graph T (i. e., drawn in the plane):
$V(T) \ldots$ one vertex for each edge of G (pair of crossing arcs)
$E(T) \ldots$ parts of the arcs between vertices
Weight of each vertex γ of G is equally distributed among vertices of T lying on γ.

Theorem 2 (Kolman and Matoušek, 2004).

$$
b(G) \leq c \log (n)(\sqrt{p c r(G)}+\sqrt{s s q d(G)})
$$

where $\operatorname{ssqd}(G):=\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)^{2}$ and c is an absolute constant.

Corollary 3.

$$
b_{w}(G)=O(\sqrt{n} \log (n)(\sqrt{d D}+d))
$$

where d is the maximum degree and D is the maximum number of other edges that an edge crosses.

Apply Corollary 3 on T.
Separator of $G:=\operatorname{arcs}$ whose at least one part is in the bisector of T.
Conjecture (Fox, Pach, Tóth). Every weighted string graph has a separator of size $O(\sqrt{m})$.

Theorem 4. $\forall \varepsilon>0 \quad \exists g(\varepsilon)$ such that every string graph with girth at least $g(\varepsilon)$ has at most $(1+\varepsilon) n$ edges.

Lemma 2 (Pach and Sharir, 2009). $K_{t, t}$-free string graphs have at most $n \log (n)^{c_{t}}$ edges.

Lemma 3. Let $\alpha>0$ and \mathcal{F} be a hereditary family of graphs with separators of size $O\left(n / \log (n)^{1+\alpha}\right)$.

Then $\forall \varepsilon>0 \quad \exists g(\varepsilon)$ such that every graph in \mathcal{F} with girth at least $g(\varepsilon)$ has at most $(1+\varepsilon) n$ edges.

Lemma 4. Let $\varepsilon>0, g$ positive integer and let $\phi(n)$ be a decreasing nonnegative function satisfying

$$
\phi(g) \leq \frac{1}{12} \quad \text { and } \quad \prod_{i=0}^{\infty}\left(1+\phi\left(\left\lceil(4 / 3)^{i} g\right\rceil\right)\right) \leq 1+\varepsilon
$$

Graphs from an $n \phi(n)$-separable hereditary family with girth at least g have fewer than $(1+\varepsilon) n$ edges.

