The Lonely Runner with Seven Runners

J. Barajas and O. Serra presented by Tomáš Vyskočil

4. března 2010

Problem:

Suppose k+1 runners having nonzero constant speeds run laps on a unit-length circular track starting at same time-space. A runner is said to be lonely if she is at distance at least $\frac{1}{k+1}$ along the track to every other runner. The lonely runner conjecture states that every runner gets lonely.

We denote by $(x)_n$ the residue class of x modulo n in $\{0, \ldots, N-1\}$ and by $|x|_n$ the residue classs x or -x modulo n in $\{0, \ldots, \lfloor N/2 \rfloor\}$.

The regular chromatic number $\chi_r(N, D)$ is define as

$$\chi_r(N,D) = \min\{k : \exists \lambda \in \mathbb{Z}_N \text{ such that } |\lambda d|_N \ge \frac{n}{k} \text{ for each } d \in D\},\$$

if D contains no multiples of N and $\chi_r(N, D) = \infty$ otherwise. We also define regular chromatic number of D as

$$\chi_r(D) = \liminf_{N \to \infty} \chi_r(N, D)$$

Conjecture 1. For every set $D \subset \mathbb{Z}$ of positive integers with gcd(D) = 1,

$$\chi_r(D) \le |D| + 1.$$

For positive integer x and a prime p, the p-adic valuation of x is

$$v_p(x) = \max\{k : x \equiv 0 \pmod{p^k}\}$$

and we also denote by $r_p(x) = (xp^{-v_p(x)})_p$ as p-ary expansion of x.

Notation D is set of positive integers, $m = \max v_p(D)$ and set $N = p^{m+1}$.

The p-levels of D are

$$D_p(i) = \{ d \in D : v_p(d) = i \}.$$

Let $q = q_{p,m}$ be define as

$$q(x) = (\lfloor \frac{x}{p^m} \rfloor)_p.$$

Set of multipliers are define as follows

$$\Lambda_{j,p} = \{1 + p^{m-j}, 0 \le k \le p-1\}, j = 0, \dots, m-1$$

and

$$\Lambda_{m,p} = \{1, 2, \dots, p-1\}.$$

Lemma 2 (Prime Filtering). Let p be a prime and let D be a set of positive integers. Set $m = \max v_p(D)$ and $N = p^{m+1}$. For each $d \in D$ let $F_d \subset \mathbb{Z}$. Suppose that

$$\sum_{d \in D_p(j)} |F_d| \le p - 1, j = 0, 1, \dots, m - 1$$
$$\sum_{d \in D_p(m)} |F_d| \le p - 2.$$

Then there is a multiplier λ such that, for each $d \in D$.

 $q(\lambda d) \notin F_d.$

Corollary 3. With the notation of Lemma 2, suppose that $|d|_N \ge N/p$ for each $d \in D_p(i)$ and each $i \ge i_0$ for some positive integer $i_0 \le m$. If

$$|D_p(j)| = \frac{p-1}{2}, j = 0, 1, \dots, i_0 - 1,$$

then

$$\chi_r(N,D) \le p.$$