The Lonely Runner with Seven Runners

J. Barajas and O. Serra
presented by Tomáš Vyskočil

4. března 2010

Problem:

Suppose $k+1$ runners having nonzero constant speeds run laps on a unit-length circular track starting at same time-space. A runner is said to be lonely if she is at distance at least $\frac{1}{k+1}$ along the track to every other runner. The lonely runner conjecture states that every runner gets lonely.

We denote by $(x)_{n}$ the residue class of x modulo n in $\{0, \ldots, N-1\}$ and by $|x|_{n}$ the residue classs x or $-x$ modulo n in $\{0, \ldots,\lfloor N / 2\rfloor\}$.

The regular chromatic number $\chi_{r}(N, D)$ is define as

$$
\chi_{r}(N, D)=\min \left\{k: \exists \lambda \in \mathbb{Z}_{N} \text { such that }|\lambda d|_{N} \geq \frac{n}{k} \text { for each } d \in D\right\}
$$

if D contains no multiples of N and $\chi_{r}(N, D)=\infty$ otherwise.
We also define regular chromatic number of D as

$$
\chi_{r}(D)=\liminf _{N \rightarrow \infty} \chi_{r}(N, D)
$$

Conjecture 1. For every set $D \subset \mathbb{Z}$ of positive integers with $\operatorname{gcd}(D)=1$,

$$
\chi_{r}(D) \leq|D|+1 .
$$

For positive integer x and a prime p, the p-adic valuation of x is

$$
v_{p}(x)=\max \left\{k: x \equiv 0 \quad\left(\bmod p^{k}\right)\right\}
$$

and we also denote by $r_{p}(x)=\left(x p^{-v_{p}(x)}\right)_{p}$ as p-ary expansion of x.
Notation D is set of positive integers, $m=\max v_{p}(D)$ and set $N=p^{m+1}$.
The p-levels of D are

$$
D_{p}(i)=\left\{d \in D: v_{p}(d)=i\right\} .
$$

Let $q=q_{p, m}$ be define as

$$
q(x)=\left(\left\lfloor\frac{x}{p^{m}}\right\rfloor\right)_{p} .
$$

Set of multipliers are define as follows

$$
\Lambda_{j, p}=\left\{1+p^{m-j}, 0 \leq k \leq p-1\right\}, j=0, \ldots, m-1
$$

and

$$
\Lambda_{m, p}=\{1,2, \ldots, p-1\} .
$$

Lemma 2 (Prime Filtering). Let p be a prime and let D be a set of positive integers. Set $m=\max v_{p}(D)$ and $N=p^{m+1}$. For each $d \in D$ let $F_{d} \subset \mathbb{Z}$. Suppose that

$$
\begin{gathered}
\sum_{d \in D_{p}(j)}\left|F_{d}\right| \leq p-1, j=0,1, \ldots, m-1 \\
\sum_{d \in D_{p}(m)}\left|F_{d}\right| \leq p-2 .
\end{gathered}
$$

Then there is a multiplier λ such that, for each $d \in D$.

$$
q(\lambda d) \notin F_{d} .
$$

Corollary 3. With the notation of Lemma 2, suppose that $|d|_{N} \geq N / p$ for each $d \in$ $D_{p}(i)$ and each $i \geq i_{0}$ for some positive integer $i_{0} \leq m$. If

$$
\left|D_{p}(j)\right|=\frac{p-1}{2}, j=0,1, \ldots, i_{0}-1,
$$

then

$$
\chi_{r}(N, D) \leq p .
$$

