Perfect matchings in $O(n \log n)$ time for regular bipartite graphs

Ashis Goel, Michael Kapralov and Sanjeev Khanna

April 29, 2010

Presented by Bernard Lidický

- graphs are actually multigraphs in this talk

Theorem 1. There exists an $O(n \log n)$ expected time algorithm for finding a perfect matching in a d-regular bipartite graph $G=(P, Q, E)$ given in adjacency array representation. (P, Q is the bipartition)

Notation:
n - size of P and as well Q
k - number of unmatched vertices in $P($ and in $Q)$
$\operatorname{deg}($.$) - vector with out degrees$
Z_{j} - expected number of visits of vertex j in a random walk (from s to t)
$b_{j}=2\left(1+\frac{n}{n-j}\right)$ - limit of steps for j th augmentation
X_{j} - number of steps in j th augmentation (random variable)
Y_{j} - "upper bound" on X_{j} (random variable)
$Y=\sum_{j=0}^{n-1} Y_{j}$ - "upper bound" on number of steps of perfect matching algorithm
$\mu_{j}=\frac{b_{j}}{\ln 2}=E\left[Y_{j}\right]$
Definition 2. Let M be a partial matching in $G=(P, Q, E)$. The matching graph H is obtained from G by orienting edges from P to Q, contracting edges in M, adding two new vertices s and t and adding d directed edges from s to every unmatched vertex of P and from every unmatched vertex of $Q d$ directed edges to t.

Lemma 3. Expected number of steps before a random walk on H started at s ends at t is at most $1+n / k$.

Proof by counting expected number of visits at every vertex during a random walk. Uses transition matrix of the random walk.
Algorithm TRUNC_RW(b):

- "construct" H
- start random walk in s
- walk until t reached or b steps used
- return $s-t$ path or fail

Algorithm PERFECT_MATCHING:

- $j=0, M=\emptyset$
- repeatedly run TRUNC_RW $\left(b_{j}\right)$ until is succeeds (obtain augmenting path p)
- use p on M to get larger matching
- $j:=j+1$
- goto second bullet

Proof of Theorem 1

- switch from computing with horrible X_{j} to nice Y_{j}
- do some estimating
- show that $P[Y \geq c n \log n] \leq n^{-c^{\prime}}$

Theorem 4. Every deterministic algorithm for finding a perfect matching in d-regular bipartite graph has time complexity $\Omega(d n)$.

By a game between an algorithm and proof, where algorithm asks for new neighbours of vertex and proof reply with a vertex of his choice. Proof loose one it reveals edges containing a perfect matching.

Exists a graph on $8 d+2$ vertices where game takes d^{2} steps.

